Software Compensation in PandoraPFANew

Katja Seidel

MPI for Physics & Excellence Cluster 'Universe' Munich, Germany

> ILD Software Meeting DESY, Hamburg 06/07/2010

Outline

- 1 Idea of Software Compensation
- 2 Parametrization of weights
- 3 $Z \rightarrow uds$ without Tracks
- 4 $Z \rightarrow$ uds with Tracks
- 5 Comments
- 6 Summary

```
Non-compensating calorimeters in ILD

\downarrow \downarrow

Try to reach \frac{e}{\pi} = 1 with software compensation

\downarrow \downarrow

Distinguish between electromagnetic and hadronic shower parts
```

- Electromagnetic showers tend to be denser than hadronic ones
- The higher the energy density, the higher the propability to be an electromagnetic shower component
- Electromagnetic shower hits get lower weights in overall energy sum than hadronic ones
- Weights depend on detector (ECAL, HCAL), hit energy density and hadronic cluster energy (ILD00)

General extraction / parameterization on of weights

Extraction of weights:

- Deviation of hit energy density (ED) in several bins for ECAL and HCAL
- \blacksquare One weight ω per energy density bin

•
$$E_{rec} = \sum_{hit,ecal} E_{hit,ecal} \cdot \omega_{ecal} + \sum E_{hit,hcal} \cdot \omega_{hcal}$$

- Lower weight for higher energy density: $\omega_{ecal} = p_{0.ecal} \cdot ED + p_{1.ecal}$
 - $\omega_{hcal} = p_{0,hcal} \cdot exp(p_{1,hcal} \cdot ED) + p_{2,hcal}$
- Weights need to be energy dependent:
 - Energy dependence of $p_{0,ecal}, p_{1,ecal}, p_{0,hcal}, p_{1,hcal}, p_{2,hcal}$
- Weights are found using the true energy of the clusters
- Minimization procedure to extract the appropriate weights

Application of software compensation:

- Input: hit energy density, hadronic cluster energy
- No deviation in energy density bins
- No use of true cluster energy

- Use events with defined cluster/ pfo energy $\Rightarrow K_L^0$ events (Thanks to Angela!), simulated with physics list: LCPhys
 - no tracks
 - one cluster/particle flow object per event
 - look at hit energy density of neutral hadronic clusters

Energy density for cluster hits in ECAL and HCAL (100 GeV).

Application of Software Compensation

The PandoraPFA Algorithm

High granularity Pflow reconstruction is highly non-trivial ! PandoraPFA consists of a many complex steps (not all shown)

Inside PandoraPFA:

- Used during reclustering and during pfo creation
- Tested: software compensation as the only energy correction function and with the default energy correction functions
- Result: Improvement comparable with default energy correction functions

After PandoraPFA:

- Final step after PFO creation
- Only applied on neutral hadrons
- Default energy correction fucntions still used
- Results: Improvement better than default energy correction functions
 ⇒ This is used for all following results

Improvement:

Software Compensation applied on the K_L^0 events simulated with physics list: LCPhys

- \blacksquare Test on independent data set $Z \rightarrow$ uds at 200 GeV
- \blacksquare Simulation of Z \rightarrow uds with physics list QGSP_BERT
- Dropped all track collections!
- Resolution given by the calorimeters only
- Gaussian fit of reconstructed energy

	default PandoraPFA	$PandoraPFA + software\ compensation$
E_{cm} [GeV]	200	200
E_{rec} [GeV]	205.4 ± 0.1	204.9 ± 0.1
σ_{rec} [GeV]	9.09 ± 0.09	8.65 ± 0.08

Energy resolution improvement 4.61%

$Z \rightarrow uds$ with Tracks

- $\blacksquare \ Z \rightarrow uds \ at \ various \ energies$
- Events simulated with physics list QGSP_BERT
- Full particle flow performance (kept all track collections)
- Gaussian fit for E_{rec}
- RMS90 for width

Energy[GeV]	91	200	360	500
Default				
Default E_{rec} [GeV]	91.48±0.04	$202.29{\pm}0.08$	367.09±0.13	$512.66{\pm}0.19$
RMS90 [GeV]	$2.58{\pm}0.05$	5.03±0.08	9.58±0.12	$14.42{\pm}0.19$
RMS90/ <i>E_{rec}</i> [%]	2.82±0.02	2.49±0.02	$2.61{\pm}0.02$	$2.81{\pm}0.02$
Software Compensation				
Software Compensation $E_{rec} \text{ [GeV]}$	91.63±0.04	201.97±0.07	365.25±0.12	508.92±0.18
Software Compensation E_{rec} [GeV] RMS90 [GeV]	91.63±0.04 2.56±0.03	201.97±0.07 4.81±0.09	365.25±0.12 9.15±0.12	508.92±0.18 13.74±0.17
Software Compensation E_{rec} [GeV] RMS90 [GeV] RMS90/ E_{rec} [%]	91.63±0.04 2.56±0.03 2.79±0.02	201.97±0.07 4.81±0.09 2.38±0.02	365.25±0.12 9.15±0.12 2.51±0.02	508.92±0.18 13.74±0.17 2.70±0.02

Changed MaxHCalHitHadronicEnergy in PandoraPFA from 1. to 100. (GeV)

- No KinkFinder used so far
- Parametrization of weights for software compensation extracted with physics list LCPhys
 Application to events simulated with physics list: OCSP_BEPT

Application to events simulated with physics list: QGSP_BERT

 \Rightarrow Same physics list should improve results

- At the moment: Software Compensation included in MarlinPandora
 Future: Software Compensation as an own Pandora algorithm, after PFO creation
- More energy set for extraction of weights could lead to a further improvement, specially at small energies \Rightarrow closer look at the dip between 10 GeV and 20 GeV

K_L^0 events with physics list QGSP_BERT at low energies

Dip at 10 GeV. Most likely due to physics list composition

Summary:

- Development of Software Compensation technique for neutral hadronic clusters in ILD00
- Software Compensation improves energy resolution up to 4 %

Outlook:

- Improve technique for PandoraPFA
- Use of different physics list
- Use of other particles for extraction of weights:

 π^- Events with no tracks (drop track collections) \Rightarrow Application of software compensation for all clusters in the reclustering phase. Improvement of energy resolution with software compensation during the reclustering ?

Phyiscs List behavior

LCPhys

- K⁰_L: hadron inelastic scattering Bertini cascade : 0 - 13 GeV Quark-gluon String with Precompound : 12 GeV - 100 TeV
- π⁻: hadron inelastic scattering Bertini cascade : 0 - 9.9 GeV Low Energy Parameterized : 9.5 - 25 GeV Quark-gluon String with Precompound : 12 GeV - 100 TeV

QGSP_BERT

- same for K_L^0 ??
- same for π^-