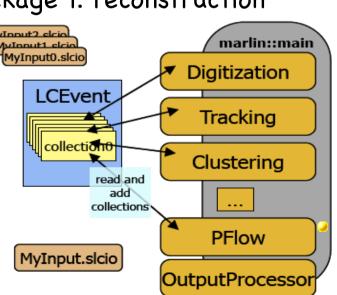


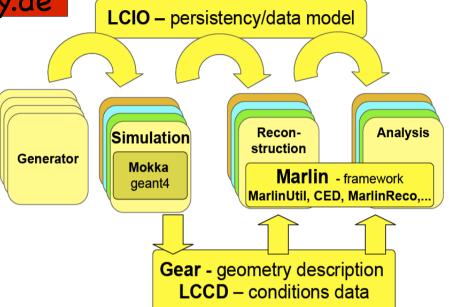
New developments in iLCSoft core tools

Frank Gaede, DESY
ILD Software and Integration Workshop
DESY, July 6-8, 2010

Outline

- Introduction
- new developments
 - ilcinstall
 - LCCD
 - LCIO
 - GEAR
 - Marlin
 - MarlinReco
 - Test system
- Summary & Outlook


DESY, Software WS,


ILD Core Software Tools

Mokka (LLR)

http://ilcsoft.desy.de

- geant4 simulation application
- LCIO (DESY/SLAC)
 - international standard for persistency format / event data model
- Marlin
 - core application framework for reconstruction & data analysis
- GEAR geometry package f. reconstruction
- LCCD
 - conditions
 - data toolkit (DB)
- Frank Gaede,
 - 3d event display

- complete framework used in Monte Carlo & 'real experiments':
 - ILD detector concept studies
 - Calice calo testbeam
 - LC-TPC testbeam
 - EUDET Pixel Telescope

synergies between testbeam and global detector optimization

3

timeline for ILD core software development

5 month	Analysis and Writing	
t0 - 5m	Monte Carlo production finished	듇
5 month	Grid Production	13 month
t0 -10m	start Monte Carlo production	73
3 month	Test, Debug and release ILDsoft	
t0-13m	freeze ILDsoft development	
>1 month	implement baseline in simulation	
t0-x	ILD baseline defined	
	evaluate technology options develop tracking package develop geometry LCIOv2 improve simulation realism improve reconstruction study machine backgrounds	~20 month

- since LOI started to develop roadmap for ILD software
- need to prepare for DBD
 - Monte Carlo mass production
- time for core software development is in 2010!
- merge goodies from JSF into framework
- develop a test system
- develop new GRID production system
- improve the geometry description
- improve the reconstruction (tracking & PFA)
- develop LCIOv2
- improve the simulation

Plans for ILDsoft:

- many points addressed
- see where we are in this workshop....

ILD software builds and installation

- ilcinstall tool: python scripts to download, build and install all ILD and external packages incl. test beam
 - · complete iLCSoft provided geant4, root and mysql are installed
- used for
 - iLCSoft releases (ilcinstall release tag == ilcsoft release)
 - reference installations in afs
 - grid installations (all WLCG sites supporting VO ILC)
 - binary tar-balls (SL4/5)
- started to have more frequent 'developers' releases
 - goal: have defined and agree release schedule, so that groups can contribute their new developments on time
 - started to 'automize' software releases
 - not quite there yet ...

afs reference installations

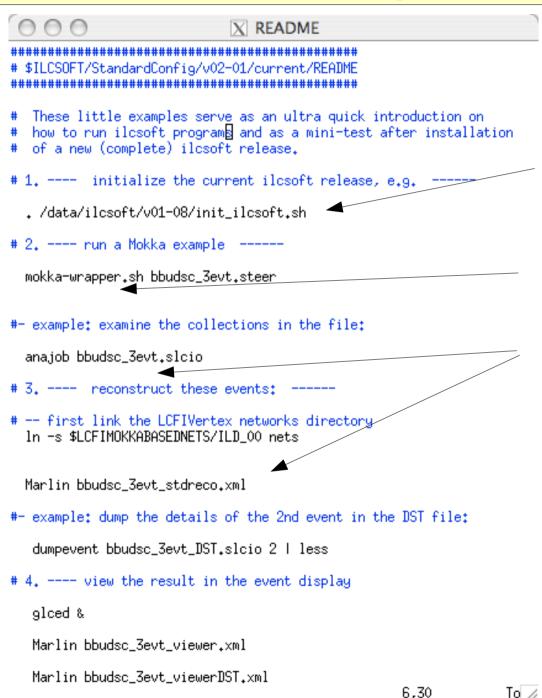
- so far provided reference installations in afs (SL4/5) at
 - /afs/desy.de/group/it/ilcsoft
 - correct directory resolved through @sys mechanism from afs
 - eg: /afs/desy.de/group/it/.i386_linux26/ilcsoft
 - no longer fully supported cannot cope with resolving
 32bit/64bit, compiler version, CPU, kernel and OS version
- from current release v01-09 on use

/afs/desy.de/project/ilcsoft/sw/XXX/v01-09

```
XXX: i386_gcc34_sl4 # i386 CPU, 32 bit, gcc3.4, SL4, SL5 and compatible x86_64_gcc41_sl5 # i686 CPU, 64 bit, gcc4.1, SL5 and compatible
```

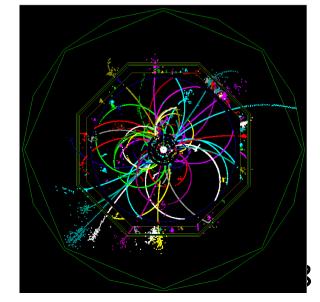
- plan to have other OSs in the future (as needed)
 - note: old releases still at old path!

iLCSoft release v01-09

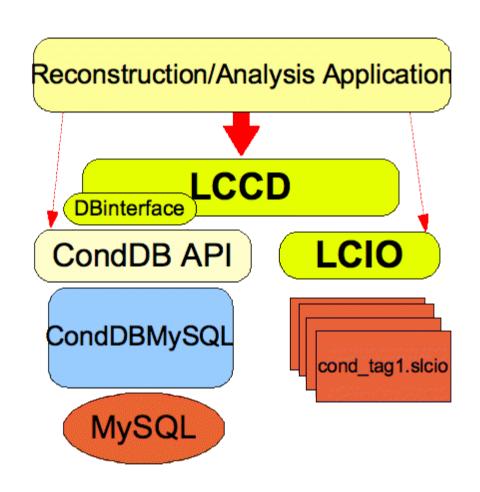

CED	v01-00 *		
CEDViewer	v01-00 *		
CLHEP	2.0.4.2		
CMakeModules	v01-09		
CondDBMySQL	ILC-0-8-1		
Druid	1.5 *		
Eutelescope	v00-02-02		
LCFIVertex	v00-03-01		
LCFI MokkaBasedNets v00-01			
Marlin Marlin	v00-12		
MarlinPandora	v00-01 *		
MarlinReco	v00-18		
MarlinTPC	v00-05-02		
MarlinUtil	v01-00		
Mokka	mokka-07-04		
MokkaDBConfig	v02-01		
9			

Overlay	v00-07-03
PandoraPFA	v03-02-01
PandoraPFANew	v00-02 *
QT	4.2.2
RAIDA	v01-04-03
SiliconDigi	v00-04-02
StandardConfig	v02-01
cernlib	2006
dcap	1.9.5-5
gear	v00-14-01
gsl	1.8
java	1.6.0
lccd	v01-00
Icio	v01-51
mysql	5.0.45
root	5.26.00b

- many packages changed (wrt v01-08)
- some new added


*see dedicated talks

made running ilcsoft really easy



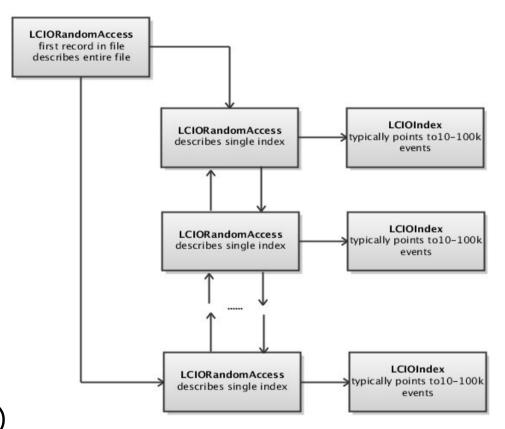
[allready in v01-08!]

- new initialization script autogenerated from ilcinstall
- new script mokka-wrapper.sh to run Mokka w/ local database (db-dump in release)
 - all binaries and libs available

- conditions data toolkit
 - abstract interface to cond. data
 - MySQL-DB, LCIO files,...
- used by Calice and LC-TPC
- improved robustness for missing conditions data
 - user now can register a default collection that is returned if nothing found (i.e not in DB)
 - originally not foreseen
 - request from the 'real world'
 - LCCD v01-00 needs version CondDBMySQL_ILC-0-8 or higher!
 - CondDBMySQL maintained by Calice

towards LCIOv2

- LCIO provides a rather complete event data model and has been used successfully in SID and ILD LOI mass production and in various R&D testbeam programs
- LCIOv2 needs to be backward compatible and should provide some new features
- direct access to events
- partial reading of events
- splitting of events over files
- (storing of arbitrary user classes)
- simplify using LCIO with ROOT
 - (ROOT macros, TTreeViewer, I/O (?) ,...)
- · improving the event data model
 - (1d,2d hits, tracks/trajectories)


LCIO release v01-51

- LCIO v01-51 released
 - direct access
 - improved EDM
 - new ostream operators<<(...) in C++</p>
 - cout << ((MCParticle*) c->getElementAt(i)) << endl ;</pre>
 - bug fixes and improvements for developers
- 'first' step towards LCIOv2
- will have LCIO developers meeting after the workshop
 - work on EDM and further improvements

direct access to LCIO events

- direct access to LCIO events needed:
 - overlay of random background events
 - physics analysis reading of preselection
 - so far available through fast skip or creation of TOC on opening (slow)
 - → introduced two additional records LCIORandomAccess/LCIOIndex
 - records written at end of file on close()
 - can append to file
 - can add direct access to existing file
 - if opened in append on writable file system (not tape)

released in v01-51

improved Tracker Hit classes

TrackerPulse

added covariance (error)
 matrix for charge and
 time measurements

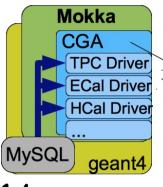
```
p** Covariance matrix of the charge (c) and time (t) measurements.
 * Stored as lower triangle matrix, i.e.
 * cov(c,c) , cov(t,c) , cov(t,t).
 */
virtual const FloatVec & getCovMatrix() const = 0;
```

```
/** The dE/dx of the hit in [GeV].
  * DEPRECATED. renamed to getEDep()
  */
virtual float getdEdx() const = 0;
```


released in v01-51

- (Sim)TrackerHit
 - renamed dEdx to EDep deposited energy
 - dEdx methods are deprecated: they still can be used but result in a printed warning ...
 - added EDep to TrackerHit
 - measurement error

```
/** The energy deposited on the hit [GeV] */
virtual float getEDep() const = 0;

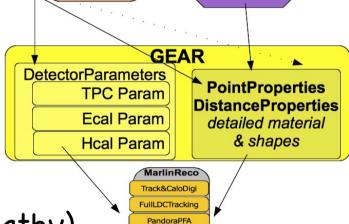

/** The error measured on EDep [GeV] */
virtual float getEDepError() const = 0;
```

a ROOT dictionary for LCIO

- LCIO now comes with a ROOT dictionary for all LCIO classes (optional) with this one can:
 - use LCIO classes in ROOT macros
- (allready in v01-12-01)
- write simple ROOT trees, e.g. std::vector<MCParticleImpl*>
- use TTreeDraw for quick interactive analysis of LCObjects:

- write complete LCIO events in one ROOT branch
- see: \$LCIO/examples/cpp/rootDict/README for details & help
- •-> we are interested in feedback from the users if this provides already the requested features

GEAR



new features in v00-14:

 removed generation of header files with aid (Java tool) -> made pure C++

improved TPCP.::getNearestPad() (J.Abernathy)

- not yet in this release:
 - Point/DistanceProperties implemented with TGeo (see talk by A. Muennich)
 - exists in branch to be released soon
 - Mokk-CGA implementation released in Mokka (see talk P .Mora de Freitas)

Full&DSTOutput

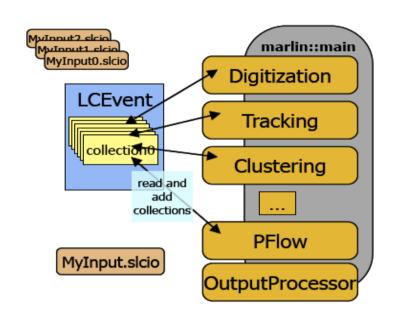
Visualiztion Event Display

ROOT

TGeo

Gear XML file

GDML file


complete detailed

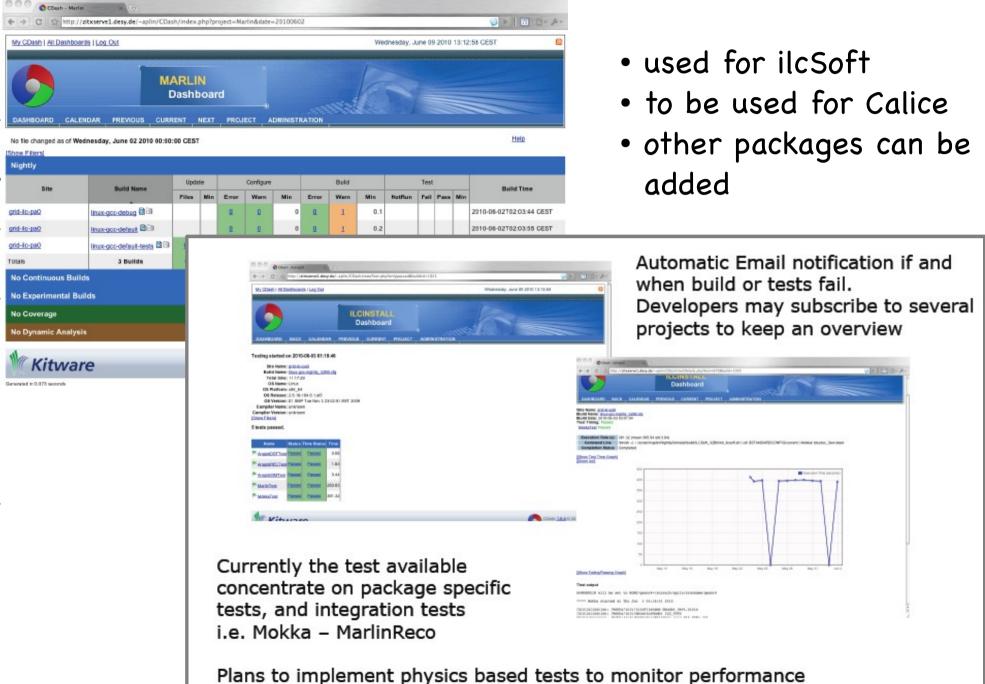
geometry

and materials

Marlin

- new features in v00-12:
 - processors can have local Verbosity parameter
 - can turn of messages from other processors for debugging
 - exit if processor specified in steering file not found
 - processor return values have to be set if used in logical expression in steering file
 - patch by Phillipe Klenze
 - minor bug fixes (gcc4.x)

to do for next release: introduce command line parameters - from JSF framework


MarlinReco

- added new package Tracking/KinkFinder (M.Thomson, J.Marshall)
- 'new' package BCalTagEfficiency (J.List,M.Berggren)
 - should be run stdreco in the future (no bcal in pandora)
 - moved from MarlinAna to MarlinReco
- improved compatibility for gcc 4.x
 - some bug fixes:
 - SimpleMuonDigi: added missing output relation collection to the event
 - SimpleMuonDigi: decoding of calorimeter layout in CalorimeterHit::type
 - fixed bug in TPCDigitizer with hit-MCParticle association
 - PFOID fixed parameter description in documentation
 - TPCDigiProcessor fixed a bug in the logic when checking for hits from the same MCParticle

Test system for iLCSoft

- started to develop test system (S.Aplin) goal to have
- unit tests
 - 'technical' software tests on class/function level
- integration tests
 - · technical tests of packages and their interplay
- physics quality
 - · check algorithms, physics performances, hit maps,...
- use CTest (CMake) and CDash (webinterface)
 - started to add unit-tests to some packages
 - integration tests (build/install) run in nightly builds
 - physics tests: DESY summer student program 2010

cdash: webinterface to test system

The AIDA project

Advanced European Infrastructures for Detectors at Accelerators

- EU project that addresses infrastructures required for the development of detectors for future particle physics experiments:
 - sLHC, ILC/CLIC, neutrino facilities, B-factories
- project duration: 4 years starts: Feb. 2011
- WP2: common software development for HEP

Task 2.2: Geometry toolkit for HEP

- Allow the description of complex geometrical shapes, materials an sensitive detectors
- Provide interfaces to full simulation programs (Geant4), fast simulations, visualization tools and reconstruction algorithms
- Allow for the misalignment of detector components
- Provide an interface to calibration constants and conditions data

Task 2.3: Reconstruction toolkit for HEP

- Tracking toolkit based on best practice tracking and pattern recognition algorithms
- Provide alignment tools
- Allow for pile up of hadronic events
- Calorimeter reconstruction toolkit for highly granular calorimeters based on Particle Flow algorithms

Summary & Outlook

- since LOI we started to work towards a roadmap for ILD software development wrt. DBD
- major developments in core software tools should be done mainly in 2010
- some significant improvements in core tools with latest release v01-09
- still quite a few things to do
 - LCIOv2, GEAR, test system, ...
- however: ILD software is fully functional for any ongoing studies!
- need to also start seriously looking into development of new tracking software

additional material

ROOT I/O for LCIO

- user request to have closer link of LCIO to ROOT
 - use LCIO classes in ROOT macros (former GLD groups)
 - have fast interactive analysis with ROOT tree
- investigate the optional use of ROOT I/O for LCIO
 - would provide 'missing features': direct access, partial reading and splitting of events (and streaming of user classes)
- created experimental branch in cvs (rio_v00-00)
 - create ROOT dictionary w/ help from ROOT team (A.Naumann)
 - implemented index based pointers for C++
 - needed some changes to LCIO classes: LCTCollection<T>, std::vector as members, ,...
 - can create almost complete copies of LCIO DST in ROOT
 - no subcollections (pointers only) yet
 - streaming mode for Marlin under development
- see: talks at ILD software working group meetings for details
- still some issues to resolve (interface to Java !!)

storing of arbitrary user classes

- LCIO event data model rather complete but also clear need for storing user defined information
 - LCGenericObjects can store almost arbitrary data structures based on ints, floats and doubles
 - files can be read w/o any additional code (dictionary)
 - small performance penalty
 - extensively used in LCCD (conditions data) by testbeams
- occasional user request for 'natively' storing arbitrary user classes in LCIO
 - possible in principle with LCIO/SIO (not documented and somewhat 'discouraged') – would come 'for free' w/ ROOT I/O
- IMHO: success of LCIO is to a large extend due to the slightly restrictive definition of the event data model i.e. the interfaces between modules/processors

partial reading & splitting of events

- needed for performance and cost (disk space) issues:
 - read only objects of interest in analysis (PandoraPFOs)
 - store simulation and reconstruction output in separate files
- main obstacle: need pointer/reference mechanism across I/O records and files
 - not available in SIO now and can't use TRefs in ROOT
- need index based pointers independent of I/O, e.g.:
 - long64 index = HASH(collName) << 32 | collIndex</pre>
- experimental C++ version exists in ROOT I/O branch for partial reading of events (not yet file splitting)
 - need further testing & implementation in SIO (also Java)
 - need extension of LCIO::Reader interface

Improving the LCIO event data model

- suggested improvements to the event data model:
- 1D, 2D tracker hits
 - LCIO (Sim)TrackerHit is a 3D space point whereas actual measurements are either 1D (strip) or 2D (TPC) where the detector surface (line) provides the additional geometry information
- Track
 - currently Track has pointers to all TrackerHits and one set of (Helix)
 parameters
 - generally one wants to have multiple fits for one set of hits, e.g. at the IP or at the face of the calorimeter
 - Trajectory could be introduced as high level convenient view to these fits
 - currently not straight forward (though possible) to store kinks in LCIO
- details are coupled to development in tracking code
- hope to make progress at this meeting (LCIO meeting friday)
- also user feedback welcome

Digitization & Reconstruction in Marlin

VXD, SIT, FTD, SET, ETD

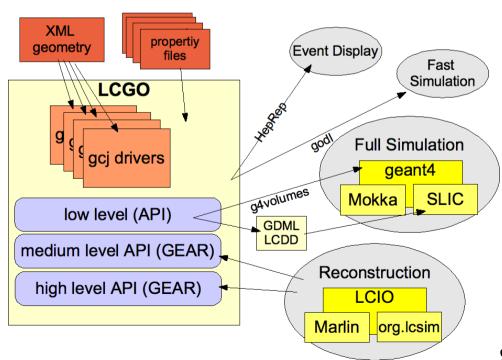
 smearing of 3D space points according to detector resolutions as established by R&D groups

TPC hits

- smearing of 3D space points taking into account drift distance, polar and azimuthal angle of track
- parameterization from TPC R&D groups
- ECal, HCal, LCal, Bcal, LHCal, Muon Calo hits
 - calibration (single particle resolution)

Tracking*

- standalone tracking in Silicon detectors
 and TPC MarlinReco-FullLDCTracking
- Kalman filtering: wrapped f77 code from LEP
- Particle Flow Algorithm*
 - PandoraPFA: best PFA to date
- JetFinder
 - Durham jet finder (run for 2-6 jets)
- Flavour Tagging*
 - LCFIVertex package: ZVTop, ZVRes + Neural Network Fl.Tag
- DST Maker
 - ReconstructedParticles, Jets, Tracks and Clusters (25k/evt)
- * see dedicated talks this workshop


Software WS, Frank

goal: new generic geometry Toolkit

- ocurrent geometry system could be improved:
 - no user parameters
 - one packet that feeds into
 - full simulation, i.e. geant4
 - fast simulation programs
 - reconstruction algorithms
 - high level interface a la GEAR
 - questions that need to be answered during reconstruction tracking and clustering/PFA
 - visualization tools

Development of such a toolkit would be part of AIDA fp7 project

- features needed:
 - allow for misalignment
 - small memory footprint
 - local to global (cellID-position)
 - fast navigation (?)
 - access to detailed material
- could base on ROOT-TGeo...

