Clustering in Scintillator strip K. Kotera, Shinshu university ILD software and Integration WS at DESY 06th July 2010

New approach for the Strip Clustering

Triplet method Split method

Gravitational center of Energy
$\mathrm{n}+1=\mathrm{y}$ layer
$\mathrm{n}=\mathrm{x}$ layer n -1 = y layer

Calculated hit position

Split the energy of a scintillator in " n " layer into square cells corresponding to the energy in cells in $\mathrm{n} \pm 1$ layer.

Split method

- Note that we do not need to give strip shape information to the PFA processor.
- Energy in split cells are calculated as a fraction of total energy in a scintillator.
- This is suitable for the PandoraPFA which requires $5 \times 5 \mathrm{~mm}^{2}$ segmentation
- Simple way

Procedure of Split method

1. get energy on this (sky blue) scintillator strip.
2. Split the strip into $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ square cells (dot lines).
3. look at the energy on the overlap strips in above and below (purple cells, these have longitudinal direction in z)

Split method

Calculated hit position
4. Share the original energy in this strip into the split cells according to the energy size in the above and below scintillator strips.
5. the position and energy of each split cell is turned over to the
PandoraPFA.

Position Resolution for 10 GeV single photons

Position of the center of energy projected on Ecal inner surface befor the procedure for strip ($\mathrm{x}, \mathrm{y}=1850 \mathrm{~mm}, \mathrm{z}$).
Each hit position is center of the scintillator strip.

Position where PFO momentum after the split method points on the Ecal inner surface ($\mathrm{x}, \mathrm{y}=1850 \mathrm{~mm}, \mathrm{z}$).

Distributions of distances from the MC true

 10 GeV 1000 photonsAll colored histograms show the positions from the MC true before split method
$0 \begin{gathered}0 \\ \\ \\ \text { Position in } Z \text { of strip (mm) }\end{gathered}$

- Any position injection can be corrected by split method (ignore isolate hits).

Comparison of position on Strip size and shape

Strip cells

P distance btn MCT/Recon(mm)

Square cells

P distance btn MCT/Recon(mm)

Cell size $(\mathrm{mm} \mathrm{x} \mathrm{mm})$	distance on ECAL inner surface	for 1 PFO events
5×5	1.33 mm,	1.16 mm
15×5	1.05 mm	0.97 mm
30×5	1.53 mm	1.23 mm
45×5	1.32 mm	1.15 mm
15×15	2.42 mm	2.34 mm

$15 \mathrm{~mm} \times 15 \mathrm{~mm}$ square cells (right) has two times worse position resolution than 45 mm $\times 5 \mathrm{~mm}$ strip cells after split method although both has the same area.

Comparison of RMS90/ \sqrt{E} between some conditions of cell shape and method

 ($\% \sqrt{G e V}$) 20

Position res. (mm)

10
3.5

- Energy: summing up
- w/o procedure for strips, both energy resolution and position resolution degrade for the scintillator strip.
- Split method improves both energy resolution and position resolution.
"Split method ignore isolate" means that isolate hits are not counted in the case where does not exist any hit in above nor below neighbors
"Split method center pos." means that energy of isolate hits mentioned above are put the center cell of split cells.

Still some problems are there in my the split method

- Even w/o any procedure for the strip clustering, i.e. directly turned over the energy and position (center of strip) Those size and shape cells have almost the same Jet energy resolution for Z pole.
- These w/o procedure case should lead us to the worst performance. However, split method makes energy resolution more degrade for $45 \mathrm{~mm} \times 5$ mm strip ScECAL so far. I believe that this is not real performance of the Scint.Strip. from some reasons.

Does problem comes from the boundaries of staves?

To calculate split fraction for blue scintillator, we do not refer green scintillator so far.

Ф dependence of the energy resolution 10 GeV single photon

It gets degradation at the boundary of staves

Φ dependence of E (mean of 90\% events) Z pole Jets

654321

lost the energy

Example of Jet an event in a log file

ScECAL $5 \mathrm{~mm} \times 5 \mathrm{~mm}$

```
[ VERBOSE "MyPandoraPFAProcessor"] UNASSOC BAD TRACK: pi+- : 0.990022 Etrack 0.986248 r : 1025.64 z int : -2450 CLOSEST
1648.75 e 1.72637
[ VERBOSE "MyPandoraPFAProcessor"] FWD TRACK :0.302164
[ VERBOSE "MyPandoraPFAProcessor"] Track Energy 66.5722
[ VERBOSE "MyPandoraPFAProcessor"] Photon Energy 12.37
[ VERBOSE "MyPandoraPFAProcessor"] Hadronic Energy 12.48
[ VERBOSE "MyPandoraPFAProcessor"] Low EM 0
[ VERBOSE "MyPandoraPFAProcessor"] Low Had 0.85042
[ MESSAGE "MyPandoraPFAProcessor"] PandoraPFA::performPFA Event :2
[ MESSAGE "MyPandoraPFAProcessor"] PandoraPFA:%performPFA PFA Energy :91.4222
[ MESSAGE "MyPandoraPFAProcessor"] PandoraPFA::performPFA PFA+ Energy :92.6724+-2.87498
[ MESSAGE "MyPandoraPFAProcessor"] PandoraPFA:.performPFA PFA+nu+fwd Energy : 92.9746+-2.87498
```

```
ScECAL (center) 45 mm x 5 mm
[ VERBOSE "MyPandoraPFAProcessor"] UNASSOC BAD TRACK: pi+- : 0.990022 Etrack 0.986248 r:1025.64 z int : -2450 CLOSEST : 1648
[ VERBOSE "MyPandoraPFAProcessor"] UNASSOC BAD TRACK: pi+- :5.61901 Etrack 5.62459 r: 1865.23 z int : 719.374 CLOSEST :9999
[ VERBOSE "MyPandoraPFAProcessor"] UNASSOC BAD TRACK: pi+- : 7.15412 Etrack 7.14791 r: 1867.89 z int : 626.441 CLOSEST : 643.1
[ VERBOSE "MyPandoraPFAProcessor"] FWD TRACK :0.302164
[ VERBOSE "MyPandoraPFAProcessor"] Track Energy 53.7997
[ VERBOSE "MyPandoraPFAProcessor"] Photon Energy 31.4706
[ VERBOSE "MyPandoraPFAProcessor"] Hadronic Energy 2.83594
[ VERBOSE "MyPandoraPFAProcessor"] Low EM 2.31627
[ VERBOSE "MyPandoraPFAProcessor"] Low Had 0.717551
[ MESSAGE "MyPandoraPFAProcessor"] PandoraPFA::performPFA Event
[ MESSAGE "MyPandoraPFAProcessor"] PandoraPFA::performPFA
[ MESSAGE "MyPandoraPFAProcessor"] PandoraPFA::performPFA PFA+ Energy : 89.3565+-1.58842
[ MESSAGE "MyPandoraPFAProcessor"] PandoraPFA::performPFA PFA+nu+fwd Energy : 89.6586+-1.58842
```


In my code (split method) for $45 \times 5 \mathrm{~mm}^{2->} 9 \times(5 \mathrm{~mm} \times 5 \mathrm{~mm}$)

- PandoraPFA calls a method (ResolveStripHits) to make Strip-clustering
- input argument: vector<MyCaloHitExtended*>ecalTempHit(layer by layer)
- CalorimeteHit *calh=ecalTempHit[ilayer][ihit]->getCaloeimeterHit();
- ---> layerhits[ilayer][cellid]
- CalorimeterHit * striphit = const_cast<CalorimeterHit*>(ic->second$>$ getCalorimterHit()); TOTAL N hits ($45 \mathrm{~mm} \times 5 \mathrm{~mm}$).
- CalorimterHitlmpl * newcalhit = new CalorimeterHitlmp(); TOTAL N x 9 hits. setEnergy, setPosition, setType, setRawHit(striphit), cetCellID (how is SimCalorimeteHits?)
- MyCaloHitExtended * splithitExtended = newMyCalohitExtended(newcalhit, CALHITTYPE_ECAL, $x, y, z)$
- splithitExtended ->setPseudoEnergy(splitenergy), setEnergyEM(splitenergy), setEnergyInMips(splitenergy*EcalToMIP) ,setEnergyHad(0),setPhysicalLayer(ilayer), setModule(module), setXYZ(splitcellpos[0], ...[1], ...[2]
- splitHitsLayer[ilayer]push_back(splithitExtended)
- Once ecalTempHit[ilayer] clear (initialized) \rightarrow ecalTempHit[ilayer].push_buck(splitHitsLayer [ilayer][ihit]
- then $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ cell information is turned over to PandoraPAProcessor.

summary of this talk

- Without (pre-)strip clustering, both energy resolution and position resolution of $45 \mathrm{~mm} \times 5 \mathrm{~mm}$ strip ScECAL are degraded for the single photon events
- With (pre-)strip clustering, both energy resolution and position resolution of $45 \mathrm{~mm} \times 5 \mathrm{~mm}$ strip ScECAL are near $5 \mathrm{~mm} \times 5$ mm ScECAL for the single photon events.
- For $\sqrt{ } s=91 \mathrm{GeV}$ two jets events, jet energy resolutions with both $15 \mathrm{~mm} \times 15 \mathrm{~mm}$ cell ScECAL and $45 \mathrm{~mm} \times 5 \mathrm{~mm}$ strip ScECAL are $\sim 30 \%$ w/o (pre-)strip clustering procedure (w/o tune). Split method makes it degrade so far.
- Influence of boundary between staves is not enough to explain the degrading of Energy resolution of strip (pre-) clustering.
- In many case, charged pions are lost and photons increase.

Plan

- Jet ennergy resolution with Strip segmentation degrades, $30 \%\left(5 \times 5 \mathrm{~mm}^{2}\right)->50 \%\left(45 \times 5 \mathrm{~mm}^{2}\right)$
- To know the reasons
- see what happen
- When does mismatch occur?
- check the code
- Tune PFAProcessor \rightarrow We learn PandoraPFANew here
- We need a processor to make Pseudo-layers to give the scintillator strip information full play for ScECAL in PandoaraPFA
- Add some algorithm to avoid ghost.
- Fix the boundary
- between Staves
- Endocap, Endcap-barrel
- Square and Strip hybrid ECAL (Mokka is already available by Gabriel and Paulo)
- ScECAL $5 \times 5 \mathrm{~mm}^{2}$ layers $+45 \times 5 \mathrm{~mm}^{2}$ layers $->$
- SiECAL $5 \times 5 \mathrm{~mm}^{2}$ layers $+45 \times 5 \mathrm{~mm}^{2}$ layers $->$

Back up

Ф dependence of the number of PFO 10 GeV single photon

654321

It degrades everywhere for stripScE

© dependence of RMS90/VE
 Z pole Jet

654321

It degrades everywhere for stripScE

Φ dependence of the position resolution 10 GeV single photon

Position Resolution for single 10 GeV single photon

Position of the center of energy befor the procedure projected on Ecal inner surface ($\mathrm{x}, \mathrm{y}=1850 \mathrm{~mm}, \mathrm{z}$)

Position of the center of energy after the procedure projected on Ecal inner surface
($\mathrm{x}, \mathrm{y}=1850 \mathrm{~mm}, \mathrm{z}$)
Position where PFO momentum points on the Ecal inner surface ($\mathrm{x}, \mathrm{y}=1850 \mathrm{~mm}, \mathrm{z}$)

Distance between reconstructed PFO and MC true ont the Ecal innter surface

Position which MC true momentum points on the Ecal inner surface ($\mathrm{x}, \mathrm{y}=1850 \mathrm{~mm}, \mathrm{z}$)

Cluster Position distribution in Z by Triplet method and Split method

using $45 \mathrm{~mm} \times 5 \mathrm{~mm}$ cells

- With both triplet method and split method, procedures correct the positions.
- PFO momenta also correct directions after implemented the procedures.
- In this case isolate hits are ignored in the split method.

Sc. length dependence of the Jet energy resol.n

We are happy if we can prevent the length dependence of E-resolution with strip clustering.
\rightarrow for 45 GeV jets, the length dependence of E-resol is prevented to a few cm ,
$\rightarrow 0.5 \mathrm{~cm}$ Scintillator is better than 1.0 cm ,
\rightarrow we need to improve the clustering method when we see 100 GeV Jets with 5 cm length Scintillator.

Status of the Strip Clustering with

 PandoraPFA

Jupiter geometry allows us simple strip clustering

Study of suitable cell ID coding and algorithm to search neighbor cells are ongoing.

Comparison of RMS90/V E between some conditions of cell shape and method

- w/o procedure for strips, both energy resolution and position resolution degrade for the scintillator strip.
- Split method improves both energy resolution and position resolution.
"Split method ignore isolate" means that isolate hits are not counted in the case where does not exist any hit in above nor below neighbors
"Split method ignore center pos." means that energy of isolate hits mentioned above are put the center of scintillator strip.

Procedure of the triplet method

1. 2-D clusters are reconstructed.
2. Each "triplet" is reconstructed from three 2-D clusters.
3. An ECAL cluster is reconstructed with "triplets".
4. PandoraPFA

A cluster-triplet from three 2-D clusters.
D. Jeans method Gravitational center of Energy

Calculated hit position

Invariant mass of two gamma from π^{0}

10 GeV 1000 pion
two PFO events

- Reconstructed masses depend on length of scintillator strips.
- PFO recognition also...

New merged cell ID was done

Layer-Z plane

Trapezoid Shape makes shift

Distance between MC true and recon.ed PFO projected on ECAL surface 10 Gev 1000 photon

- Again, when isolate hits are ignored, position resolution is better.
- Injection position resolution is small.

- Red dots show injection position dependence of position resolution using data all events.

Black dots show the same but using only one PFO events.

- blue dots shows position dependence with equally shared method.
- blue and purple show the position response with center method and referring method
- green shows the position resolutions using triplet method.

Triplet vs. Split

	triplet	Split
Clustering	Pre-clustering and to turn over to the PandoraPDA	Turn over to the PandoraPFA
Returned position in the longitudinal direction of a strip	One position / strip, referring to above below layer energy	Split into 5 mm x 5 mm square cells $=$ suit the PandoraPFA procedure
Procedure	Rather complicated	Simple then easy for the boundary treatment
Isolate hits	ignore if it is not included in any calorimeter track	We can choose some methods

Plan

- Jet ennergy resolution with Strip segmentation degrades, $30 \%\left(5 \times 5 \mathrm{~mm}^{2}\right)->50 \%\left(45 \times 5 \mathrm{~mm}^{2}\right)$
- lack of understanding to use some class?
- treatment of boundary hits between staves (then, Endcap-barrel)
- Tune of PandoraPFA (using PandoraPFANew)
- PiO mass resolution
- Фdependence(boundary between staves)
- \#of PFO (σ E($\Phi, \theta)$),
- \#of Cell/PFO,
- Once try to use PandoraPFANew (we should be required to use near future)
- DESY --> learn How to use New PandoraPFA
- Square and Strip hybrid ECAL (Mokka is already available by Gabriel and Paulo)
- ScECAL $5 \times 5 \mathrm{~mm}^{2}$ layers $+45 \times 5 \mathrm{~mm}^{2}$ layers $-->$
- SiECAL $5 \times 5 \mathrm{~mm}^{2}$ layers $+45 \times 5 \mathrm{~mm}^{2}$ layers -->

