Status of Vibration Analysis

H. Yamaoka

R. Sugahara M. Masuzawa **KEK** Vibration properties of the ILD QD0 support system has been studied.

Vibration measurement at KEKB

Measurement items

- Vibrations on each positions
- Influence of air conditioner
- Coherency between both sides

(New measurements)

- Cooling effects of the QCS magnets
- Vibration during the magnet excitation

Measurements during the QCS magnet cooling-down

P.S.D. in the vertical direction

- What happened at 12 o'clock??

- What was happened at 12:00?? -> Cooling just had been begun.

 \rightarrow Oscillations around 1Hz at 12:00 were observed in all directions.

Frequency Response Function (QCS – Floor)

Coherency (QCS – Floor)

 \rightarrow Coherency around 1Hz measured at 12:00 became better than other data.

Vibration measurement during the magnet excitation

Electrochemical motion transducer with high damp-
ing coefficient
Velocity-flat response
+/-20V (40 V p-p differential)
120 dB @ 1Hz
1 – 75 Hz; Optional: 100Hz
1 nm @ 10 Hz
Standard: 2000 V/m/s; Opt.: 350 - 20,000 V/m/s
NONE REQUIRED
NONE REQUIRED
Std +/-10 deg (Optional: fully operational at any
random orientation)
>200 Hz
Standard: -12 to $+55$ °C
75 x 110 x 150 mm
Appx 0.75 kg
10-15 Vdc; 12 Vdc nominal
30 mA

Power supplyData logger

Measured E.Y. static deformations

Vibration Measurements at the Belle

End-yoke

Barrel-yoke

End-yoke

Barrel-yoke

Coherency(End yoke - Barrel yoke)

Measurement results

- Resonant frequency in the beam-dir was increased. \rightarrow Stiffer
- Amplitudes on the B. Y. were vey incresed when the solenoid is excited.
- Coherencies are slightly improved when the solenoid is excited.

- The belle detector is not fixed on the floor.
- The barrel yoke is just placed on the table.
- Top of the end-yoke is not fixed.

150tonnes

Consistency between the calculations and measurements

→ It is supposed that <u>actual damping ratio is smaller than the assumption.</u>
→ In ANSYS: damping ratio= 2%

Damping ratio(%)	Ref.: JEAG 460	01-1987
Ferroconcreate	structure	: 5.0
Steel frame stru	cture	: 2.0
Welding structu	re	: 1.0
Bolt/Rivet struc	ture	: 2.0
Laying pipes		: 0.5 ~ 2.5
Duct for the air	conditioner	: 2.5
Cable tray		: 5.0
Liquid in a tank		: 0.5

→ Damping ratio was evaluated with some structures.

Bus bars for horn magnet for the T2K <u>a. For the 1st horn magnet</u>

b. For the 2nd/3rd horn magnet

Measurement results

Measurement result-A

70	No.	Freq.(Hz)	damping (%
	1	23.7	0.196	
	2	50.9	0.678	
	3	77.8	0.276	
	4	103	0.842	
	5	137	0.474	

Measurement result-B

No. Þ	Ž <mark>Freq.(Hz)</mark> P	damping (%)
1	26.861	0.66134
2	41.639	0.70658
3	57.435	0.38899
4	68.201	0.72795

-96X:1X -97X:1X -98X:1X -99X:1X -100X:1X -101X:1X -102X:1X =>

Damping ratio should be set to ~0.5%. 2% damping seems too high.

→ Respond amplitude was calculated and <u>check consistency btwn calc. and meas.</u>

Modal calculation

Response amplitude (Vertical direction)

Investigations of High Damping Material

We have just started to study high damping material. → T2k(Horn magnets), Super-KEKB, ILD?

■ 代表的な化学成分 Typical chemical composition

Mn	Cu	Ni	Fe	単位 Unit
Bal.	22.4	5.2	2.0	wt%
Bal.	20.0	5.0	2.0	at%

■ 主な物性値 Typical properties

物性 Pro	perty	値 Value	近い元素 Approximate element
ヤング率	Young's modulus	80 GPa (300K)	AI, Ag, Cd
熱伝導率	Heat conductivity	10 W/(m-K) (300K)	Ti, Sb, Pb, Bi
比熱	Specific heat	512.7 J/(kg·K) (300K)	Ti, Fe, Cr
熱膨張率	Coefficient of thermal expansion	22.4 ×10 ⁻⁶ /K (300K)	Al, Ag, Sn, Cu
密度	Density	7.25 × 10 ³ kg/m ³	Fe, Mn
硬さ	Vicker's hardness	120~140	

	引張強さ	耐力 (0.2%)	伸び	絞り	疲劳強度 (×10 ⁷ 回)
	Tensile strength	Yield strength	Elongation	Reduction of area	Fatigue strength(×10 ⁷ tmes)
標準材 Standard material	530MPa	265MPa	40%	61%	125MPa

19

Measurement at free-mode

3DView: 15 Log Hz

D2052 ~6% @14Hz

AI; ~0.3% @23Hz

20

3DView: 19.4 Log Hz

Measurement at cantilever

Calculation(Presented at Beijing meeting)

Respond amplitude at each position is estimated.

Summary

- **<u>1. Vibration measurements</u>**
- We measured vibrations at the Belle/KEKB/CMS/ND280 so far.
- (Belle detector)
- \rightarrow Vibration at barrel yoke grows very big when the solenoid is excited. (KEKB)
- \rightarrow Effects of the QCS-coil cooling down is not so big.
 - The Belle/KEKB have been shutdown toward for the Bellell/SuperKEKB.
- \rightarrow We have lost the chance of vibration measurement at present.
- \rightarrow We will measure vibration when the Belle is roll-out.
- 2. Check consistency
 - In progress...
 - → Good consistency at the KEK QCS magnet support system if damping ratio is assumed to be 0.5%.
 - → Seismic test with high damping material will be also carried out.
 - \rightarrow Measurement of damping ratio will be evaluated.
- 3. Calculations
 - PSD calculations in case of difference damping ratio have been carried out.
 - \rightarrow About two times bigger than the previous calculation.(2% \rightarrow 0.5%)
- 4. Design stiff support structure
 - Not so big progress...
- 5. Realistic vibration data for calculations CMS

Conclusion(@KEKB/Belle)

1. Power Spectrum Density

Tunnel: H-dir. \rightarrow ~0.3Hz (Micro-seismic), ~3Hz(Resonancy of soil)

V-dir. \rightarrow ~3Hz(Resonancy of soil)

Q-table, magnet \rightarrow Peak around 8Hz was measured additionally.

- 2. Influence of Air conditioner
 - A small difference was measured around 1~3Hz
 - \rightarrow No obvious differences.
- 3. Coherency
- (1) Both sides of KEKB-tunnel (Nikko-side $\leftarrow \rightarrow$ Oho-side)

No coherency except for ~0.3Hz and ~3Hz.

(2) Distance dependency

Frequency above 10Hz is getting worse.

4. Cooling effects

There is no big effects to vibration behavior. It occurs at just beginning of the cooling

Further measurements/plan:

- BELLE solenoidal field with immune to magnetic fields (SP500). \rightarrow Done
- Vibration when beam is circulating with SP500.
- Improving the magnet/BELLE/etc support structure.
- An orbital FB is needed.

No active cancellation system is considered at this point.

- We are thinking about something similar to the KEKB iBump system. \rightarrow To next page...

havior. It occurs at just beginning of the cooling.							
	Integrated amplitude(nm)						
		>1Hz			>10Hz		
	Perpend	Beam	Vertical	Perpend	Beam	Vertical	
B4 floor	50	46	67	4	3	9	
KEKB floor	55	45	68	10	5	9	
Magtable	90	50	76	12	16	19	
QCS-boat	250	60	118	15	21	30	
QC1RE	241	77	112	52	50	46	
Belle stand	105	69	71	13	11	13	

Vertical direction tolerance

0.1µm at QC1

 \Rightarrow COD of ~ σy at the IP (By Y. Funakoshi)

Made by Masuzawa-san. SuperKEKB iBump system **Orbital FB** Y.Funakoshi, M.Masuzawa+Magnet group+Monitor group What to monitor to maintain luminosity Beam-beam kick using BPM data. \therefore Magnets to move the orbit Vertical & horizontal steering magnets. Probably two systems (1)System for scanning (finding a good collision point) (2)System for maintaining a good collision condition. *The present iBump system does both (1)&(2). \therefore Frequency that we deal with < 50 Hz (or 25Hz)

★A practice with one of the iBump magnets will be done in June. "Practice" does not mean actual FB, but to try to see the beam response to the magnet/power supply we have with the monitor group & magnetic field response to power supply.

→ Amplitude in the perpendicular dir. is bigger than others due to peak at 8Hz.

Servo Accelerometer MG - 102

 $\frac{\text{Acc. 0.1} \sim 400\text{Hz}}{60\text{dB} = 1\text{gal/V}}$

29

