

- Introduction
 - Reminder of present design
 - Goals for DBD 2012
- Report from the inner meeting
 - Vertex detector construction
 - SIT mechanical design
 - FTD 3->7 design
 - Integration of inner detectors
- Some remaining issues
 - Calorimeters
 - TPC
 - Forward region
 - Etc....
- Conclusions

ILD overview

Inner region

- From ILD work plan:
 - Complete basic mechanical integration of the baseline design accounting for insensitive zones such as the beam holes, support structure, cables, gaps or inner detector material
 - Develop a realistic simulation model of the baseline design, including the identified faults and limitations
- We need to focus on 2 region of the ILD detector for end 2010 :
 - Overlap region between barrel and endcaps calorimeter
 - Estimation of cables, services and gaps (see Catherine's talk)
 - Inner region :
 - Identify supporting material which has a huge impact on the detector performance
 - Estimate cables and services
 - Report of first meeting after

Report of the inner region meeting

- Focus on several aspects of these sub detectors :
 - Mechanical design
 - Cooling
 - Cabling
 - Integration of all the components
- The goals were to
 - Sketch first solution for the inner region integration
 - Define the material budget to be implemented
 - in the simulation model

The vertex detector

Cooling

Room temperature operation

- CMOS-like sensors
- Passive cooling
 - ➔ Air flow ~ 1 m/s (for mech. Stability)
 - ➔ Sensor Temp~10-30 °C
 - ➔ Air Temp. Under study
- **x** No real cryostat, nevertheless
 - ➔ Faraday cage needed
 - ➔ May require air separation / SIT
 - ➔ Some thickness of aluminium
- Tubes required on beam pipe
 - ➔ Diameter ? mm

Negative temperature operation

- x FinePixel-CCD-like sensors
- x Active cooling required
 - ➔ C02 evaporation in tubes
 - ➔ Sensor Temp~ -(5-15) °C
- Real cryostat needed
 - ➔ Backbone 0.5 mm aluminium
 - ➔ Isolation material = 10mm styropor
 - → 0.15(?) % X0
- Tubes required on beam-pipe
 - → ?

Cabling

Basic option

- Flat kapton cables running from each ladder to the beam pipe
- Small patch panel on the cryostat to interconnect to other flat kapton cables running to the next larger patch pannel some meters away
- x 2 such cables for each ladder
 - → ~200 cables divided on the 2 end-caps
- x Kapton cable ~ 50 μm thick, ~1cm wide
- After some distance (meters) conversion to long distance cables
 - → How much ?
 - → What kind ?

Layer support

- x 1st layer is mounted on the beam pipe
- x 2nd & 3rd layers mounted on the Beryllium support
- Beryllium support clamped on beam pipe
- **x** No study on the impact of beam pipe deformation
- **x** No technical drawing available (manpower)

Soft&Integration workshop @ DESY

M. Joré – Integration status

• One proposal from D. Moya and Al.

- Cabling :
 - 1 HV cable per sensor
 - 2 twisted pairs for readout per 2 Chips' = 52 tp per module = 208 tp per inner rod /364 tp per outer rod

SIT (2)

- 1 supply cable per DC-DC converter (12 V)
- 1 output (1-2 V) connector per DC-DC converter containing 2 cables for 2 hybrids
- Cooling :
 - Still open issue
 - Air flow solution to be checked
 - If not sufficient, first layer maight be included in VTX Cryostat
- A new assembly must be studied avoiding cracks

FTD D3 to D7

- Cabling
 - 1 HV cable per sensor
 - 2 twisted pairs for readout per 2 Chips'
 - 1 supply cable per DC-DC converter (12 V)
 - 1 output (1-2 V) connector per DC-DC converter containing 2 cables for 2 hybrids

FTD (2)

- Cooling
 - To be studied
 - Air flow cooling as the first solution

- We agreed to keep the first concept along the beam tube
 - Cable amount to be estimated to check needed gaps

- First concept approved by sub detectors groups
 - VTX clamped on beam pipe
 - FTD 3->7, beam pipe and SIT outer layer on Inner Support Structure
 - SIT layers are assembled on an end cap wheel
- Different solution for SIT inner layer and FTD1&2
 - 1 : supporting on beam pipe

2 : supporting on SIT outer layer

- The best compromise must be found between
 - Less material budget (solution 1?)
 - Best mechanical behaviour (solution 2)
 - Decoupled SIT and FTD1&2 from beam tube

- Next meeting planned during CERN meeting in October
- Items to be studied :
 - Heat power and cooling
 - More details on cables dimensions
 - Stability of each components
 - Mechanical design of the VTX detector (no one for the moment)
 - Design of FTD1&2
 - Other proposal for the SIT design (from Torino?LPHNE?)
 - Mechanical design of the supporting structure (MJ)
 - Interfaces with TPC (MJ)

-

Other issues to be studied for the DBD 2012

Integration issues for DBD 2012

- TPC support :
 - First ideas with tie rods from Hcal or Cryostat
 - Hcal solution will provide a better vibration behaviour
 - Rough estimation of tie rods dimensions :
 - TPC weight : 1000Kg
 - 3 tie rods both sides (minimum number to lock every degrees of freedom
 - Titanium
 - Safety coefficient of 6
 - Tie rods diameter : 6mm
 - Detailed study to be performed

Comments on the CLEO-III drift chamber support, Dan Peterson, Cornell, 2010-07-01

- Calorimeters integration and assembly :
 - Hcal : Integration studies on going by both concepts (see Karsten's and Imad's talks)
 - Ecal : Important effort from LPSC on cooling (see Catherine's talk)
- Forward region :
 - Optimisation to be performed to reduce material budget
- QD0 support
- Etc...

Conclusions

- Inner region integration meeting
 - We had an interesting meeting last week
 - Agreement on a first sketch
 - First cabling paths
 - Important to start face to face meetings
 - But there are a lot studies to be performed to get a real estimation of the material budget
 - Mechanical design of every elements including their supporting structures
 - Go into details concerning the cables/services amount (cooling studies mandatory)
 - Very difficult due to the limited resources
- Integration studies for DBD2012
 - Some studies on going
 - We need to reinforce the synergy between integration and sub detector groups (TPC, calorimeters, etc..)