Components affected by the Gradient Specification Range

IIL

or...

Some comments on upcoming cavity statistics, etc

Jim Kerby, Fermilab 10 Sept 2010

A Brief Look Forward

TDP/R&D plan release 5

1st Pass, 35 cavities, ~29%

2nd Pass, 27 cavities, ~56%

A Brief Look Forward

Incoming Cavities thru 2012

Deliveries through 2012				
	2010	2011	2012	
AES		10	10	A
Niowave Roark	6	3	7	Ν
Research Instruments				F
Pavac		3	7	F
				_
Japan		2	2	J
				_
XFEL			300	X

Tests		eted		
	2010	2011	2012	Total
AES	8	10	10	28
Niowave Roark	6	3	3	12
Research Instruments	3			3
Pavac		3	3	6
lanan		<u> </u>	2	
Japan		Ζ	Z	4;
XFEL (total)			225	225

A Brief Look Forward

Current 1st pass 35MV/m stats		
Ncav	35	
Npass	10	29%
Current 2nd pass 35MV/m stats		
Ncav	27	
Npass	15	56%

2012 ILC Only	53
2012 Hi Grade + Preproduction	20
Total	73

Assumed Incremental Yield In 2010-2012 Test 1st Pass 2nd Pass	S	100% 100%
Cumulative 1st pass 35MV/m stats Ncav Npass	108 83	77%
Current 2nd pass 35MV/m stats		
Ncav	100	
Npass	88	88%

ilc

(My) Comments

- Brute force (and exceptional performance) will not give the desired yield at 35 MV/m
 - Require trimming of the included data by time, vendor batch, or some other metric (a rolling average of some sort, tbd)
 - Following Rongli's presentation of yesterday, continue to work on early intervention methods, and remediation
 - Automated cuts keep us honest; Constant vigilance allows us to progress
- For the current 2nd pass plot, with a hard cut at 35MV/m, 15 of 27 cavities 'pass' at a relative cost of 2.12

- where $1 = cavity+1^{st}$ process; $0.3 = 2^{nd}$ process;

- 27 cavities start; 16 cavities reprocessed; 12 rejected
- 39MV/m avg VT gradient (no upper cut)

Electropolished 9-cell cavities

2nd Pass Distribution

JLab/DESY (combined) up-to-second successful test of cavities from established vendors - ACCEL+ZANON+AES (27 cavities)

ΪĹ

BAW - 1

Gradient Range

Electropolished 9-cell cavities

• JLab/DESY (combined) first successful test of cavities from established vendors - ACCEL+ZANON+AES (35 cavities)

JLab/DESY (combined) up-to-second successful test of cavities from established vendors - ACCEL+ZANON+AES (27 cavities)

IIL

2nd Pass Gradients

сит	None 1	L5MV/m	20MV/m	25MV/m	35MV/m
	41.8	41.8	41.8	41.8	41.8
	41.5	41.5	41.5	41.5	41.5
	41.2	41.2	41.2	41.2	41.2
	41.1	41.1	41.1	41.1	41.1
	41	41	41	41	41
	41	41	41	41	41
	39.3	39.3	39.3	39.3	39.3
	39	39	39	39	39
	38.88	38.88	38.88	38.88	38.88
	38.6	38.6	38.6	38.6	38.6
	38	38	38	38	38
	37.7	37.7	37.7	37.7	37.7
	37	37	37	37	37
	36	36	36	36	36
	35.1	35.1	35.1	35.1	35.1
	33.23	33.23	33.23	33.23	
	32.75	32.75	32.75	32.75	
	30.93	30.93	30.93	30.93	
	29	29	29	29	
	27.85	27.85	27.85	27.85	
	22.2	22.2	22.2		
	20.7	20.7	20.7		
	20.5	20.5	20.5		
	19	19			
	17.96	17.96			
	16.6	16.6			
	6.14				
Number of Cavities	27				
2nd Process	16				
Rejected	0	1	4	7	12
Average	32.0	33.0	35.0	37.0	39.1
Rejection	0%	4%	15%	26%	44%
"Cavity Base Cost"	1.00	1.04	1.17	1.35	1.80
"Cavity Unit Cost"	1.18	1.22	1.38	1.59	2.12

ΪĹ

2nd Pass Comparison

СИТ	None	15MV/m	20MV/m	25MV/m	35MV/m
	41.8	41.8	41.8	41.8	41.8
	35.1	. 35.1	. 35.1	35.1	35.1
	33.23	33.23	33.23	33.23	
	32.75	32.75	32.75	32.75	
	30.93	30.93	30.93	30.93	
	29	29) 29	29	
	27.85	27.85	27.85	27.85	
	22.2	22.2	22.2		
	20.7	20.7	20.7	,	
	20.5	20.5	20.5	1	
	19	19)		
	17.96	17.96	5		
	16.6	16.6	5		
	6.14				
Number of Cavities	27	,			
2nd Process	16	5			
Rejected	C) 1	. 4	. 7	12
Average	32.0	33.0) 35.0	37.0	39.1
Rejection	0%	5 4%	5 15%	26%	44%
"Cavity Base Cost"	1.00	1.04	1.17	1.35	1.80
"Cavity Unit Cost"	1.18	1.22	1.38	1.59	2.12

←-13 suppressed rows

10 Sept 2010 J Kerby

ΪĹ

BAW - 1

(Some more) Comments

- Very Limited Statistics! Careful.....but they will get better.
- Hopefully the change in 'my' Cavity Unit Cost measure by lowering the acceptance cut makes the drive for such a change clear
- The averages calculated are the VT limit averages. There will be an RF limit in operation, but in these tables I think it would be double counting of the margin
- Sorting by gradient before installation in cryomodules strikes me as very reasonable given the number of cavities that would be in parallel production
- There may be some increase in VT risk by pushing each cavity to a quench limit as opposed to an administrative goal