Energy variations and emittance growth in the ILC main linac with KCS

Yipeng Sun and Chris Adolphsen ARD Division, SLAC National Accelerator Lab

Sep., 2010

ILC main linac tunnel options

- Distributed RF Scheme (DRFS)
- Klystron Cluster RF Distribution Scheme (KCS)

Klystron Cluster RF Distribution Scheme

Each tap-off from the main waveguide feeds 10 MW through a high power window and probably a circulator or switch to a local PDS for a 3 cryomodule, 26 cavity RF unit (RDR baseline).

- Service tunnel eliminated
- Electrical and cooling systems simplified
- Concerns: power handling, LLRF control coarseness

Lattice cell

Linac lattice

Simulation code

- 6-D Gaussian distribution (correlated)
- Longitudinal cut at 4 sigma
- Horizontal emittance (nor.): 10mm.mrad; Vertical emittance (nor.): 0.02mm.mrad
- RMS Bunch length 0 $\mu \rm{m}$ (no Wake field); RMS energy spread 1.5×10^{-2}

KCS model and error type

- Random error ($\sigma = 0.05$) on each cavity's gradient (freq. error)
- Correlated errors: RF power and beam current (loading). Assumed perfectly corrected.
- Feedback works within each KCS; Systematic error: gradient $\sigma = 0.01$, phase $\sigma = 1$ degree
- Linear correlation for bunches in same pulse

Energy spread between 2625 bunches in one pulse

Yi-Peng Sun et al. (SLAC/ARD) Energy variations and emittance growth in the ILC main linac v Se

Energy variations along Linac (one seed)

Worst case: 1% Systematic zero sum every 2.5km

Energy distribution at linac end w 2600 pulses(seeds)

Yi-Peng Sun et al. (SLAC/ARD) Energy variations and emittance growth in the ILC main linac v Sep., 2

$\gamma \epsilon_{\rm y}$ distribution at linac end w 2600 pulses(seeds)

Very small change in $\gamma \epsilon_{\gamma}$ due to chromatic effects

Linac alignment problem

•
$$X_m = X - X_q + X_B + X_r$$

• From X_m : BPM readings to calculate X_q

Alignment algorithms

- One to One
- Global correction

Yi-Peng Sun et al. (SLAC/ARD) Energy variations and emittance growth in the ILC main linac w

One-to-one correction

Iterate to zero all BPM readings

Model for Analytical approach

- Dispersive emittance growth = local effect
- Only Quad at dispersion region contributes

Analytical approach (1)

Definition of projected emittance:

 $\gamma \epsilon_y = \gamma \sqrt{\left(< y^2 > - < y >^2 \right) \cdot \left(< {y'}^2 > - < {y'} >^2 \right) - \left(< yy' > - < y > < {y'} > \right)^2}$

With respect to the centroid trajectory:

 $(\gamma \epsilon_y)^2 = \gamma^2 \left[\left(\sigma_y^2 + < \Delta y^2 > \right) \cdot \left(\sigma_{y'}^2 - < \Delta y'^2 > \right) - \left(\sigma_{yy'}^2 - < \Delta y \Delta y' > \right)^2 \right]$

With: $(\gamma \epsilon_y)^2 = \gamma^2 \left(\sigma_y^2 \cdot \sigma_{y'}^2 - \sigma_{yy'}^2 \right)$ $\sigma_v^2 = \epsilon_v \beta_v$ $\sigma_{v}^{\prime 2} = \frac{\epsilon_{y}}{\beta_{v}}$ $\sigma_{\mathbf{v}\mathbf{v}'} = 2\epsilon_{\mathbf{v}}\alpha_{\mathbf{v}}$ $\gamma \epsilon_{\rm V} = \gamma \epsilon_{\rm V0} \sqrt{1 + 2\Delta \gamma \epsilon / \gamma \epsilon_{\rm V0}}$ $\Delta\gamma\epsilon = \frac{\gamma}{2} \left(\frac{1+\alpha^2}{\beta} \Delta y^2 + 2\alpha \Delta y \Delta y' + \beta \Delta y'^2 \right)$ $\Delta y = \frac{k_0 L}{1+\delta} - k_0 L = k_0 L (-\delta + \delta^2 - \delta^3 + \dots)$ $\Delta v' = K \Delta v$

Analytical approach (2)

Square of 2-D projected emittance = determinant of matrix

$$\epsilon^{2} = \left(egin{array}{cc} \sigma_{y_{0}}^{2} + \sum < \Delta y_{i}^{2} > & 0 \\ 0 & \sigma_{y_{0}'}^{2} + \sum < \Delta {y_{i}'}^{2} > \end{array}
ight)$$

at the
$$n^{th}$$
 quad
 $< \Delta y_i^2 >= \sum_{j=1}^{i-1} R_{12_{j,i}} < \Delta y'^2_j >$
 $< \Delta y'^2_i >= \sum_{j=1}^{i-1} R_{22_{j,i}} < \Delta y'^2_j >$

 $\begin{array}{l} \text{Simply and we have} \\ < \Delta {y_i}^2 > = \sum_{j=1}^{i-1} (\frac{1}{2}) \beta^2 < \Delta {y'_j}^2 > \\ < \Delta {y'_i}^2 > = \sum_{j=1}^{i-1} (\frac{1}{2}) < \Delta {y'_j}^2 > \end{array}$

Benchmark: with acceleration ($\sigma_z = 0$)

Use same fitting parameter 1k seeds Left: $\sigma_{p0} = 0.0075$; Right: $\sigma_{p0} = 0.01$ With acceleration, integrate over cell numbers, assuming that the energy gain is the same in each cell.

$$\gamma \epsilon_{n} = \gamma_{0} \sqrt{\sigma_{x_{0}}^{2} + A \cdot \log_{e} \left(\frac{E_{n}}{E_{0}}\right) \cdot \beta^{2} \cdot (K_{1} \cdot \sigma_{Q} \cdot \sigma_{p0})^{2}}$$
$$\cdot \sqrt{\sigma_{x_{0}'}^{2} + A \cdot \log_{e} \left(\frac{E_{n}}{E_{0}}\right) \cdot (K_{1} \cdot \sigma_{Q} \cdot \sigma_{p0})^{2}}$$

Comparison: emittance growth (1-to-1)

Small difference w or w/o energy error

• 1-to-1 correction algorithm

18 / 31

Solving method (Global correction algorithm)

$$x_{i} = R_{12_{i,1}}\theta_{1} - \sum_{j=1}^{i-1} R_{12_{i,j}}K_{j}x_{q,j}$$
$$x_{i}' = R_{22_{i,1}}\theta_{1} - \sum_{j=1}^{i-1} R_{22_{i,j}}K_{j}x_{q,j} - x_{q,i}K_{i}/2$$

 $\mathbf{R}\cdot\mathbf{Q}=\mathbf{B}$

R combined R matrix, $n \times n$ sparse matrix

- ${f Q}$ quad offsets+initial beam offset, n imes 1
- **B** BPM reading, $n \times 1$
- **B** includes BPM to Q offset error, and BPM measurement error

Use Row reduction (Gaussian elimination) to solve the system For ILC linac, 300×300 matrix

Error Table

parameter	value
Quad offset	$\sigma = 300 \mu m$
BPM to Quad offset	$\sigma = 5 \mu m$
BPM measurement	$\sigma = 1 \mu m$
Initial beam offset	$\sigma = 1 \mu m$
Initial beam angle	$\sigma=1\mu$ rad

New Quadrupole offset (Moving Quad option)

- Global correction algorithm , One seed
- New quad offset Globally correlated; roughly $6\mu m$

Comparison: emittance growth (global c. algorithm)

• Very small difference; with global correction algorithm

Yi-Peng Sun et al. (SLAC/ARD) Energy variations and emittance growth in the ILC main linac w

Sep., 2010 22 / 31

Confidence level (projected $\gamma \epsilon_{y}$)

• At 90% confidence level, less than 4nm (20% of 20nm) growth in projected $\gamma \epsilon_{\gamma}$, global correction algorithm

Sep., 2010 23 / 31

Backup(0): Benchmark of code (β -function)

Benchmark of the beta function in one FODO cell, between MADX TWISS output and the simulation results of this code.

Sep., 2010 24 / 31

Backup(1): Dispersion and emittance

Projected emittance

 $\epsilon = \sqrt{(<x^2>-<x>^2) \cdot (<x'^2>-<x'>^2) - (<xx'>-<x><x'>)^2}$

Linear dispersion corrected emittance $\epsilon = (\langle (x - D_x \delta)^2 \rangle - \langle x - D_x \delta \rangle^2) \cdot (\langle (x' - D'_x \delta)^2 \rangle - \langle x' - D'_x \delta \rangle^2) - (\langle (x - D_x \delta)(x' - D'_x \delta) \rangle - \langle x - D_x \delta \rangle \langle x' - D'_x \delta \rangle)^{20.5}$

Dispersion

$$\begin{split} D_x &= (< x\delta > - < x > < \delta >) / \left(< \delta^2 > - < \delta >^2 \right) \\ D'_x &= (< x'\delta > - < x' > < \delta >) / \left(< \delta^2 > - < \delta >^2 \right) \end{split}$$

Backup(2): Example 5 quads

$$\mathbf{R} = \begin{pmatrix} R_{12}(2,1) & 1 & 0 & 0 \\ R_{12}(3,1) & R_{12}(3,2)K_2 & 1 & 0 \\ R_{12}(4,1) & R_{12}(4,2)K_2 & R_{12}(4,3)K_3 & 1 \\ R_{12}(5,1) & R_{12}(5,2)K_2 & R_{12}(5,3)K_3 & R_{12}(5,4)K_4 \end{pmatrix}$$

$$\mathbf{Q} = \begin{pmatrix} \theta_1 \\ x_{q,2} \\ x_{q,3} \\ x_{q,4} \end{pmatrix}, \mathbf{B} = \begin{pmatrix} x_{BPM,2} \\ x_{BPM,3} \\ x_{BPM,4} \\ x_{BPM,5} \end{pmatrix}$$

Yi-Peng Sun et al. (SLAC/ARD) Energy variations and emittance growth in the ILC main linac v Sep., 2010 26 / 31

Backup(3): Global Alignment algorithm

- Define error: Quad offset; BPM to Quad offset (do not change for one specified seed); BPM measurement error; Initial beam offset; Initial beam angle (change from pulse to pulse)
- Track single particle, get BPM readings
- Algorithm to calculate Quad offset (Row reduction, Gaussian elimination)
- Move Quad (or Use steering correctors)
- Track bunch (10,000 macro-particles) to calculate emittance etc. statistically
- Another seed

Backup(4): Reproduce orbit from R matrix

28 / 31

Backup(5): Beta function from tracking

Backup(6): Model for Analytical approach

- Dispersive emittance growth = local effect
- Only Quad at dispersion region contributes

Backup(7): Comparison: no acceleration

Left: $\sigma_{p0} = 0.001$; Right: $\sigma_{p0} = 0.002$ Without acceleration, the physical vertical emittance at the n^{th} cell is $\epsilon_n = \sqrt{(\sigma_{y_0}^2 + 0.5 \cdot n \cdot \beta^2 \cdot (K_1 \cdot \sigma_Q \cdot \sigma_{p0})^2) (\sigma_{y'_0}^2 + 0.5 \cdot n \cdot (K_1 \cdot \sigma_Q \cdot \sigma_{p0})^2)}$

31 / 31