#### ILC-BAW1 Interim Summary and Further Plan

Akira Yamamoto, Marc Ross and Nick Walker GDE Project Managers

Reported at BAW1, held at KEK, Sept. 9, 2010

#### The 1<sup>st</sup> BAW Announcement

#### http://ilcagenda.linearcollider.org/conferenceDisplay.py?confId=4593

| basenne Assessment Workshop (07-10 Sep | nttp://icagenda.inearconder.org/conferenceDisplay.py?conf                                                                                                                                                                |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🕲 🛃 🛛 LOCAL: Asia/Tokyo                | ر<br>الالالالالالالالالالالالالالالالالالال                                                                                                                                                                              |
|                                        | The 1st Baseline Assessment Workshop                                                                                                                                                                                     |
| *                                      | 7-10 September 2010 KEK, Seminar hall, 1st floor, 4-goukan                                                                                                                                                               |
| Overview                               | nome                                                                                                                                                                                                                     |
| General Plan and Focusing Discussion   | ns                                                                                                                                                                                                                       |
| Timetable                              | Organized by ILC-GDE Project Managers:                                                                                                                                                                                   |
| ♥ Registration                         | Akira Yamamoto, Marc Ross, and Nick Walker<br>Hosted and locally organized by KEK LC office:                                                                                                                             |
| Registration Form                      | Chair: Seiya Yamaguchi                                                                                                                                                                                                   |
| List of registrants                    | Scientific Secretary: Tetsuo Shidara<br>Administrative Secretary: Tomiko Shirakata                                                                                                                                       |
| Access                                 | Administrative Secretary, Tomiko Simakata                                                                                                                                                                                |
| Accommodation                          | <ol> <li>Main Subjects:</li> <li>Single-tunnel ML design and High Level RE System (Sept. 7 - 8)</li> </ol>                                                                                                               |
| Workshop Dinner                        | <ul> <li>2) Accelerator Field Gradient for SCRF Cavity (Sept. 9 – 10)</li> </ul>                                                                                                                                         |
| Wireless LAN                           | 2 Objectives and Goals:                                                                                                                                                                                                  |
| VISA                                   | - Assessment of technical proposal in SB2009                                                                                                                                                                             |
| Committees                             | - R&D plan and goal in TDP-2                                                                                                                                                                                             |
| Contact Us                             | Discussions toward consensus in GDE and Physics/Detector groups                                                                                                                                                          |
|                                        | Participants to the workshop (requested)<br>- GDE PMs/APMs<br>- GDE ADI team / TAG leaders<br>- Physics/Detector Representatives<br>Participants anticipated<br>- AAP and PAC members<br>- Internal and external experts |

#### SB2009 Themes



#### **Updated ILC R&D / Design Plan**



#### Major TDP Goals:

- ILC design evolved for cost / performance optimization
- Complete crucial demonstration and riskmitigating R&D
- Updated VALUE estimate and schedule
- Project Implementation Plan

#### **BAW1-2, Technical Address**

#### **TLCC Process**

Baseline Assessment Workshops

IL

- Face to face meetings
- Open to all stakeholders
- Plenary

- Open plenary meeting
- Two-days per theme
- Two themes per workshop
  - Two four-day workshops
- Participation (mandatory)
  - PM (chair)
  - ADI team / TAG leaders
    - Agenda organised by relevant TAG leaders
  - Physics & Detector Representatives
  - External experts
- Achieve primary TLCC goals
  - In an open discussion environment
- Prepare recommendation

## Baseline Assessment WorkShops

#### Baseline Assessment Workshops

- Face to face meetings
- Open to all stakeholders
- Plenary

|       | When                | Where | What                                                                |
|-------|---------------------|-------|---------------------------------------------------------------------|
| WAB 1 | Sept. 7-10,<br>2010 | KEK   | 1. Accelerating Gradient<br>2. Single Tunnel (HLRF)                 |
| WAB 2 | Jan 18-21,<br>2011  | SLAC  | <ul><li>3. Reduced RF power</li><li>4. e+ source location</li></ul> |

**BAW1-2, Technical Address** 

## Time-Table / Agenda (Sept. 7)

#### updated: August 27

| Day | Am/pm            | Subject                                                                                                                                                                                       | Chair/presenter                                                                     |
|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 9/7 |                  | Single Tunnel ML Design and HLRF -1                                                                                                                                                           | S. Fukuda / C. Nantista                                                             |
|     | 9:0 0<br>90 min  | Opening and Introduction<br>- Opening address<br>- Report from AAP<br>- BAW1 objectives and goals                                                                                             | Chair: S. Yamaguchi<br>- A. Suzuki (KEK-DG)<br>- E. Elsen<br>- A. Yamamoto (GDE-PM) |
|     | 10:45<br>90 min  | Single tunnel CF design and HLRF design<br>- Single tunnel CF design status (1 hour)<br>- General HLRF design in SB2009 (30 min)                                                              | Chair: T. Shidara<br>- A. Enomoto<br>- S. Fukuda                                    |
|     | 13:30<br>120 min | HLRF KCS<br>-KCS design and R&D status (45 min)<br>-Demonstration of feasibility (45 min)                                                                                                     | Chair: S. Fukuda<br>- C. Nantista<br>- C. Adolphsen                                 |
|     | 15:45<br>105 min | <ul> <li>HLRF – EU XFEL and RDR</li> <li>Introduction (20 min)</li> <li>Experience from XFEL (1 hour)</li> <li>RDR configuration (as backup) (10 min)</li> <li>Discussion (15 min)</li> </ul> | Chair: N. Walker<br>-M. Ross<br>-W. Bialowons<br>- S. Fukuda<br>- ALL               |

## Time-Table / Agenda (Sept. 8)

| Day | Am/pm | Subject                                                                                                                               | Convener/presenter                                                 |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 9/8 |       | Single Tunnel ML Design and HLRF -2                                                                                                   | S. Fukuda / C. Nantista                                            |
|     | 9:00  | DRFS<br>-DRFS design and R&D status<br>-Installation strategy<br>-(1 hour total)                                                      | Chair: C. Nantista<br>- S. Fukuda<br>- S. Fukuda                   |
|     | 10:45 | HLRF and LLRF<br>-LLRF requirements/issues for KCS 30<br>-LLRF requirements/issues for DRFS 30<br>-Requirements from Beam Dynamics 30 | Chair: T. Shidara<br>- C. Adolphsen<br>- S. Michizono<br>- K. Kubo |
|     | 13:30 | Operational consideration<br>- Sorting cavities in relation with HLRF 30<br>- Gradient and RF Power Overhead 30                       | Chair: C. Adolphsen<br>- S. Noguchi<br>- J. Cawardine              |
|     | 15:45 | <ul><li>Discussions and Recommendations</li><li>General discussions and questions</li><li>Summary and recommendations</li></ul>       | Chair: A. Yamamoto<br>- TBD<br>- ALL                               |

#### Single Tunnel Proposal: intro 1

- The proposal to go to a single tunnel solution for the Main Linac technical systems remains essential that outlined in the SB2009 report.
- The primary motivation was and remains a reduction in project cost due to the removal of the service tunnel for the Main Linac.
- The original proposal was based on the adoption of two novel schemes for the HLRF:
  - KCS
  - DRFS
- <u>KCS</u> has been identified as a preferred solutions for <u>'flat land' sites</u> where surface access (buildings) is not restricted
- <u>DRFS</u> has been identified as being preferred solutions <u>for mountainous region</u> where surface access (buildings) is severely limited.
- Having both R&D programmes in parallel can be considered as risk-mitigation against one or other of them failing.
- It is acknowledged that both these schemes require R&D
  - Programmes are detailed in the R&D Plan Release 5
- At the time of submission in December 2009, the two primary obstacles to adoption of a single tunnel were identified as
  - Safety egress
  - Operations & Availability

#### Single Tunnel Proposal: intro 2

- Both these issues were addressed during the 2009 and the successful results reported in the SB2009 proposal.
  - The conclusions of these studies were later accepted by both AAP and PAC
- The remaining identified issues were with the technical feasibility and cost of the HLRF solutions upon which the singletunnel proposal was based.
- Two components to successful adoption were identified
  - Definition of acceptance criteria for TD Phase R&D for successful demonstration of one or more of the novel proposed schemes
  - Inclusion in the designs of a risk-mitigation strategy, whereby a fall-back to the RDR HLRF Technical Solution (in a single-tunnel) could be adopted, should the associated R&D not be considered successful.
- The remainder of these slides deals with these two additional points

#### **RDR HLRF Tech. Solution 1**

- Two scenarios have been cursorily studied for support of <u>an RDR-like HLRF solution in a</u> <u>single-tunnel</u>
  - 1. 10MW MBK + (Marx) Modulator in the tunnel
  - 2. XFEL-like solution with modulators (low-voltage) accessible in cryo refrigeration builds/caverns, with long pulsed cables feeding 10MW MBKs (via a pulse transformer) in the tunnel.
- Both are considered technically feasible.
- For 1, early investigations show the tunnel diameter would need to increase to 6.5m
  - This represents an estimated 10% increase in cost/unit tunnel length (~0.5% TPC) considered acceptable.
  - Current availability\* simulations (cf SB2009 proposal) suggest an additional ~5% linac overhead (~2.5% TPC)
- For 2:
  - additional space for modulators in halls/caverns is required.
  - Cost of 3000 km of pulsed cable will be required.
  - Re-design of tunnel cross-section needed to accommodate cables.
  - Current availability\* simulations (cf SB2009 proposal) suggest an additional ~2.5% linac overhead (~1.3% TPC)

#### RDR HLRF Tech. Solution 2

- It is proposed that these RDR-like single-tunnel solutions be carried forward in parallel, to enough detail to support a cost estimate (incremental)
- This estimate together with the scope of the necessary re-design work to adopt one of the scenarios, will be factored into the TDR Risk Assessment
- The main R&D and AD&I effort will continue to pursue the preferred baseline solutions for KCS and DRFS.
- In order to reduce the number of scenarios to be developed, we propose to phase out one of these RDR-like options within the next six-months



## Time-Table / Agenda (Sept. 9)

| Day | Am/pm | Subject                                                                                                                                                                                                                                               | Convener/presenter                                             |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 9/9 |       | Cavity: Gradient R&D and ML Cavity Gradient                                                                                                                                                                                                           | R. Geng/A. Yamamoto                                            |
|     | 9:00  | <ul> <li>Introduction and Current Status</li> <li>Technical address for the 2<sup>nd</sup> part of WS</li> <li>Overview from RDR to R&amp;D Plan 5</li> <li>Progress of cavity gradient data-base/yield</li> </ul>                                    | Chair: M. Ross<br>- A. Yamamoto<br>- R. Geng<br>- C. Ginsburg  |
|     | 10:45 | <ul> <li>R&amp;D Status and further R&amp;D specification</li> <li>Fabrication, testing, &amp; acceptance for XFEL/HG</li> <li>R&amp;D expected in cooperation w/ vendors</li> <li>R&amp;D w/ a pilot plant w/ vendor participation</li> </ul>        | Chair: K. Yokoya<br>- E. Elsen<br>- M. Champion<br>- H. Hayano |
|     | 13:30 | <ul> <li>Short-tem R&amp;D and Specification</li> <li>Field emission and R&amp;D strategy</li> <li>Gradient, Spread, Q0, Radiation: R&amp;D specification, standardization</li> </ul>                                                                 | Chair: C. Pagani<br>- H. Hayano<br>- R. Geng                   |
|     | 15:45 | <ul> <li>Long-term R&amp;D ACD subjects and goals</li> <li>Seamless/hydro-forming, Large Grain, Cavity shape variation, VEP, Thin Film,</li> <li>Further R&amp;D toward TEV/ML</li> <li>Discussions for Cavity R&amp;D and Recommendations</li> </ul> | Chair: A. Yamamoto<br>- R. Rongli to lead<br>discussions       |

#### Time-Table / Agenda (Sept. 10)

| Day   | Am/pm                          | Subject                                                                                                                                                                                                                                                                                                    | Convener/presenter                                                      |
|-------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 9/10  |                                | ILC accelerator gradient and operational margin                                                                                                                                                                                                                                                            | A. Yamamoto and<br>J. Kerby                                             |
|       | 9:00                           | <ul> <li>Gradients from VTS to Operation</li> <li>Introduction: Overview on ILC gradient specification at each testing / operation step</li> <li>Terminology definition</li> <li>Operational results from VT/HTS/CM tests in data base</li> <li>Operational results from STF VT/CM tests at KEK</li> </ul> | Chair: H. Hayano<br>A. Yamamoto<br>M. Ross<br>-C. Ginsburg<br>- E. Kako |
|       | 10:30                          | Operational margin <ul> <li>Lorentz Force Detuning and Effects on op. margin</li> <li>Comments from LLRF and Beam Dynamics</li> <li>Acceerator Operation gradient margin</li> </ul>                                                                                                                        | Chair: N. Toge<br>- E. Kako<br>- (K. Kubo/C. Michizono)<br>- N. Walker  |
|       | 13:30                          | Cost Impacts<br>- Reminder on cost effects<br>- List of systems / technical components affected by<br>gradient specification change<br>- A plan to prepare for communication w/ industries                                                                                                                 | Chair: N. Walker<br>- P. Garbincius<br>- J. Kerby<br>- A. Yamamoto      |
| 10-9- | <b>15:30</b><br>9, A. Yamamoto | General Discussion and recommendation <ul> <li>General discussions</li> <li>Summary and recommendations Address</li> </ul>                                                                                                                                                                                 | Chair: A. Yamamoto<br>- All                                             |

#### Discussion Topics: Accelerating Gradient 1<sup>st</sup> BAW, KEK, Sept. 9-10, 2010

- Gradient Improvement Studies: (Convener: Rongli Geng/A. Yamamoto)
  - Material/fabrication, surface processing, instrumentation and repair
  - Strategy to overcome 'quench', and 'field emission' and to maintain moderate cryogenic load,
  - Strategy to define and specify 'Emitted Radiation', (Radiation that may result in increased cryogenic-load and usable gradient limitations),
  - Improvement of gradient and achievement of adequate yield,
- Strategy for Accelerating Gradient in the ILC: (Convener: Akira Yamamoto)
  - Overview and scope of 'production yield' progress and expectations for TDP, including acceptable spread of the gradient needed to achieve the specified average gradient,
  - Specifications of Gradient, Q0, and Emitted Radiation in *vertical test*, including the spread and yield,
  - Specifications of Gradient, Cryogenic-load and Radiation, including the gradient spread and operational margin with nominal controls, in *cryomodule test*,
  - Specifications of Gradient, Cryogenic-load and Radiation, including the gradient spread and the operational margin with nominal controls in *beam acceleration test*,

Impact on other accelerator systems: CFS, HLRF, LLRF, Cryogenics, and overall costs.
 10-9-9, A. Yamamoto

## **Global Plan for SCRF R&D**

| Year                                   |                                  | 07                    | 200                                                                    | 8   | 2009             | 2            | 010             | 2011                  | 2012           |
|----------------------------------------|----------------------------------|-----------------------|------------------------------------------------------------------------|-----|------------------|--------------|-----------------|-----------------------|----------------|
| Phase                                  |                                  |                       |                                                                        | TDF | P-1              |              |                 | TDP-2                 |                |
| Cavity Gra<br>to reach 3               | idient in v. test<br>5 MV/m      | → Proces<br>Yield 50° |                                                                        |     | <mark>50%</mark> |              | $\rightarrow$   | Produ<br>Yield 9      | ction<br>0%    |
| Cavity-strin<br>31.5 MV/m<br>cryomodul | ng to reach<br>n, with one-<br>e |                       | Global effort for stri<br>assembly and test<br>(DESY, FNAL, INFN, KEK) |     |                  | ing          |                 |                       |                |
| System Te<br>acceleratio               | st with beam                     |                       |                                                                        | FL/ | ASH (D<br>STF2   | ESY)<br>(KEM | ),NN<br>K, exte | IL (FNAL<br>end beyoi | .)<br>nd 2012) |
| Preparatio<br>Industrializ             | n for<br>ation                   |                       |                                                                        |     | F                | Prod         | uctic           | n Techn<br>R&D        | ology          |

10-9-9, A. Yamamoto

#### Cavity Gradient Yield as of June, 2010



#### **Gradient Improvement Plan**

Based on Recent Understanding due to Globally Coordinated S0 Program



- Highest priority is to push yield up near 20 MV/m – the yield drop due to local (geometrical) defects near equator weld.
  - Fab. QA/QC
  - Mechanical polish prior to heavy EP
  - Post-VT local targeted repair
  - Seamless cavity
  - Large-grain mat. From ingot slicing
  - Fine grain mat. Optimization
- Also high priority is to suppress field emission at high gradient (up to 42 MV/m) – and quantify its effect on cryogenic loss and dark current.

#### R&D Milestone in RDR revised in Rel-5

| Stage      | Subjects              | Milestones to be achieved                                                                                 | Year          |
|------------|-----------------------|-----------------------------------------------------------------------------------------------------------|---------------|
| S0         | 9-cell cavity         | 35 MV/m, max., at Q0 $\ge$ 8E9, with a production yield of 50% in TDP1, and 90% in TDP2 <sup>1), 2)</sup> | 2010/<br>2012 |
| <b>S</b> 1 | Cavity-string         | 31.5 MV/m, in average, at $Q0 \ge 1E10$ , in one cryomodule, including a global effort                    | 2010          |
| S2         | Cryomodule-<br>string | 31.5 MV/m, in average, with full-beam loading and acceleration                                            | 2012          |

#### ILC Accelerator, Operational Gradient

- Strategy for <u>Average Accelerating Gradient in the ILC operation</u>:
  - Overview and scope of 'production yield' progress and expectations for TDP,
    - including acceptable spread of the gradient needed to achieve the specified average gradient,
  - Cavity
    - Gradient, Q0, and Emitted Radiation in *vertical test*, including the spread and yield,
  - Cryomodule
    - Gradient, Cryogenic-load and Radiation, including the gradient spread and operational margin with nominal controls,
  - ILC Accelerator
    - Gradient, Cryogenic-load and Radiation, including the gradient spread and the operational margin with nominal controls
  - Strategy for tuning and control,
    - including feedback, control of 'Lorentz force detuning', tolerances and availability margin,
  - Impact on other accelerator systems: CFS, HLRF, LLRF, Cryogenics, and overall costs.

#### A possible balance in

#### ILC ML Accelerator Cavity Specification

A new guideline in TD Phase 2 may be proposed as follows (summarized in Table 3-4):

- R&D goal for the 9-cell gradient to be kept at 35 MV/m at a production yield of 90 % or more
- ILC project accelerating gradient specification specifying average gradient and spread of low-power test cavity gradients and a subsequent spread in cryomodule operational cavity gradient limits.
- Table 3-4: A possible balance of gradients in various stages in the ILC ML cavity production stage (to be studied and established)

| Single 9-cell<br><mark>cavity</mark> gradient      | String Cavity gradient<br>in cryomodule w/o<br>beam    | String cryomodule<br>gradient in accelerator<br>with beam |
|----------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|
| 35 MV/m, on average w/<br>spread above a threshold | 33 MV/m, on average<br>(or to be further<br>optimized) | 31.5 MV/m, on average<br>(or to be further<br>optimized)  |

# ILC SCRF Cavity Specification and relationship to the R&D Programs

| Cost-relevant design<br>parameter(s) for TDR                                       | Currently proposed specification | Relevant R&D<br>programme | Comment                                                                                          |
|------------------------------------------------------------------------------------|----------------------------------|---------------------------|--------------------------------------------------------------------------------------------------|
| Mass production<br>distribution (models)                                           |                                  | S0                        | cost optimisation will<br>require a model for the<br>yield curves based on the<br>S0 R&D results |
| Average gradient                                                                   | 35 MV/m                          | S0                        | primary cost driver                                                                              |
| Gradient spread                                                                    | ±20% (28-42 MV/m)                | S0/S1/S2                  | cost-optimisation and performance balance                                                        |
| Average performance in a cryomodule (margin)                                       | 5%**<br>(33 MV/m average)        | S1                        | total of 10% specified in                                                                        |
| Allowed operational<br>gradient overhead for RF<br>control (full beam-<br>loading) | 5%**<br>(31.5 MV/m average)      | S2 (S1*)                  | <i>RDR, but distribution not given (assumed equally split here)</i>                              |
| Required RF power<br>overhead for control                                          | 10%                              | S2 (S1*)                  |                                                                                                  |

Important input will also be gained from S1 program

•\*\* as a starting point for the discussions

#### Highest Gradient Operation From S. Nogichi



## Higher Gradient Operation with Better Electric Power Efficiency Small Tuning Range & Less DLD Effect

# Cavity Grouping with Over-Coupling

How should we do for Degraded Cavity ?

#### To Save other Good Cavities, We should have Tunability for RF Power & Coupling.

#### Summary from S. Michizono

|        |                      | RDR          | DRFS (PkQI)       | DRFS(Cavity grouping) |
|--------|----------------------|--------------|-------------------|-----------------------|
|        | Operation gradient   | Max. 33 MV/m | Average 31.5 MV/m | Max. 38 MV/m          |
|        | RF source            | 10 MW        |                   | 800 kW                |
|        | Waveguide loss       | 8% power     | 2% power          | 2% power              |
| ver    | Static loss (QI, Pk) | 2% power     | 2% power          | 2% power              |
| vod    | Kly Hv ripple        | 2.5% power   | 2.5% power        | 2.5% power            |
| RF     | Microphonics         | 2% power     | 2% power          | 2% power              |
|        | Reflection           | 0% power     | 14% power         | 0% power              |
|        | Other LLRF margin    | 10% power    | 10% power         | 5%~10% power          |
|        |                      |              |                   |                       |
|        | QI tolerance         |              | 3% (2)            | 3% (2)                |
| erance | Pk tolerance         |              | 0.2dB (2)         | 0.2dB (2)             |
|        | Detuning tolerance   |              | 15Hz rms(3)       | 20Hz rms (3)          |
| To     | Beam current offset  |              | 2% rms (3)        |                       |

(1) LLRF overhead ~5%

(2) Cavity gradient tilt (repetitive) ~5%

(3) Pulse-to-pulse gradient fluctuation ~1%rms

We have to examine these numbers experimentally.

Tolerance should be discussed with cavity and HLRF group. If the tolerance is smaller, better gradient tilt would be possible.

#### Quench limits and operating gradients for 1.3GeV (FLASH ACC4-7) from J. Carwardine



#### Ideally, all cavities reach their respective quench limits at the



Reality: errors in power ratios due to manufacturing tolerances of rf attenuators (In this case: tolerances are of the order +/-0.1dB) 10-9-9, A. Yamamoto BAW1-2, Technical Address

## Subjects to be further studied in TDP-2

- Further Studied in TDP-2
  - How wide cavity gradient spread may be acceptable in balance of HLRF power source capacity and efficiency?
  - How large <u>operational margin required and</u> <u>adequate</u> in <u>cryomodule</u> and <u>accelerator</u> operation?

#### Discussions

#### toward consensus/recommendation

- Observation
  - Challenging operational margin in accelerator operation to be reliable enough for sufficient availability for physics run.
- Our Strategy Proposed
  - Make our best effort with forward looking position to realize the accelerator operational gradient to be 31.5 MV/m, as proposed in RDR, (and) on average with reasonable gradient spread,
  - Keep cost containment concept resulting in the ML tunnel length fixed and not to expand,
  - Prepare for the industrialization including cost and quality control.
  - Ask physics/detector groups to share our observation and forward looking strategy

#### Summary - 1 BAW1 Objectives and Goals

- Assess technical proposal in SB2009
- Confirm R&D Plan required and Goal in TDP-2
- Discuss Impact across system interfaces, cost, and schedule,
- Discuss toward consensus in GDE and Physics/Detector groups to prepare for TLCC.

### Summary – 2 Tasks in each day/session

| Date     | Main Theme                                            | Tasks                                                                                                                                                                                                          |
|----------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sept. 7  | Introduction<br>KCS: Design and R&D<br>RDR: Technical | Make the workshop tasks clear<br>Process for the reality including cost<br>Feasibility as a backup solution                                                                                                    |
| Sept. 8  | DRFS: Design and R&D<br>LLRF/Control<br>Discussions   | Process for the reality including cost<br>R&F operation margin for cavity/accelerator<br>Recommendation                                                                                                        |
| Sept. 9  | Cavity Gradient R&D<br>Discussions                    | Strategy for cavity gradient improvement<br>Short-term and long-term strategy to be<br>clear                                                                                                                   |
| Sept. 10 | ML Accelerator Gradien<br>Discussions                 | Accelerator gradient including spread<br>Appropriate balance of gradient in<br>cavity/cryomodule/ML-accelerator,<br>Adequate/required/acceptable gradient<br>margin in accelerator operation<br>Recommendation |