Low-Q IP BPM

Y. I. Kim^{*}, A. Heo, E-S. Kim (KNU) S. T. Boogert (JAI) D. M. McCormick, J. May, J. Nelson, T. Smith, G. R. White (SLAC) Y. Honda, N. Terunuma, T. Tauchi, T. Naito (KEK)

Contents

- Low-Q IP BPM
- Low-Q IP BPM Electronics
 - Latency
 - Linearity
- Beam test
- Summary

Low-Q IP BPM

Structure of the low-Q cavity BPM

We have developed a low-Q cavity BPM in order to achieve shorter timing resolution with a high position resolution. The developed low-Q cavity BPM consists of a one-cell sensor cavity and a one-cell reference cavity.

2010.06.30

bluekyi83@knu.ac.kr

Low-Q IP BPM Electronics

Low-Q IP BPM Electronics Latency

Block diagram

Waveforms on a digital oscilloscope

Switch closed (yellow)

• Electronics latency = 17 ns

Low-Q IP BPM Electronics Linearity

Block diagram

Results

- Conversion Gain
 - Low-Q IP BPM : 10 dB
 - C-band heterodyne : 30 dB
- Low-Q IP BPM Electronics sensitivity \approx -80 dBm
 - Expected Resolution : 10 nm
- Desired resolution : 2 nm

More development is required!

Low-Q IP BPM Installation

Taper

Installed in the Ext beam line

- Used the C-band heterodyne electronics
 - Want to measure the low-Q IP BPM intrinsic resolution
 - Higher sensitivity, higher gain
 - Even though decay times are different, the y signal frequency is same.

2010.06.30

Raw Signal Processing

- The digital down-conversion algorithm was used
- The raw waveform from the low-Q IP BPM was digitized and then multiplied by a complex Lo of the same frequency
- The signal was filtered using a gaussian time domain filter with 10 MHz bandwidth

2010.06.30

bluekyi83@knu.ac.kr

Position Sensitivity of low-Q IP BPM

- Used two C-band BPMs with no attenuator
 - These C-band BPMs' resolution below 50 nm
- DDC amplitude get from the signal processing
- Calculated predicted y position of low-Q IP BPM
 - The predicted position was interpolated between two C-band BPMs
- Low-Q IP BPM gradient is larger 6 times than MFB2FF

Low-Q IP BPM : 1 bunch 3 trains

- Normal C-band cavity signal : lots of overlapping signals
- Low-Q IP BPM will be used for Feedback (FONT) so need fast response
- Clear bunch separation

Summary

- Low-Q IP BPM electronics
 - latency : 17 ns
 - Sensitivity : -80 dBm
 - Expected resolution : 10 nm
 - Desired resolution : 2 nm
 - More development is required
- Position sensitivity : 64.7 DDC/ μ m