The ATF Damping Ring BPM Upgrade

Nathan Eddy, Eliana Gianfelice-Wendt Fermilab for the ATF Damping Ring BPM Team

New Hardware

Improvements on the analog downconverter

CAN-bus controls, IF filter, remote diagnostics, etc.

New RF, DC & CAN-bus distribution. Grounding of tunnel hardware.

Switch to in-house VME digitizer

8-ch. ,125 MSPS ADC (serial outputs), Cylcone III FPGA, PLLlocked CLK distribution

Able to measure Injection TBT, Narrowband Orbit, Narrowband Calibration , and Last Turn on every injection

- 95 of 96 Ring BPMs were switched to the new system during the May shutdown
- Beam commissioning began the last week of May
 - Initial Timing tests revealed an issue with clock synchronization
 - The echoteks used a 69.2MHz clock (32 samples/turn) synthesized from the 714MHz
 - The turn by turn data collection was initiated by an external turn marker
 - Fine for 1024 turns
 - The new system counts turns internally from injection to provide turn by turn data at any turn and last turn data
 - The synthesized 69.2MHz clock was found to drift over a full machine cycle
 - This caused problems with the turn by turn data at the end of the cycle
 - The solution was to bypass the clock synthesizer on the Timing Module
 - Simply use the clock divider, 714MHz/10 = 71.4MHz (33 samples/turn)
 - Solved the locking issue but required a major system modifications
- Operation of all bpms was demonstrated over the remaining shifts
 - Orbit data was read into the ATF control system
 - First beam studies
 - Two Sets of Narrowband Orbits were collected, without and then with calibration
 - Several Turn by Turn data files were collected both at injection and by kicking the beam after 500k turns

- Narrowband orbit for each injection (shot) is measured
 - The mean orbit and rms over 160ms is reported for Horz, Vert
- For each data set, 128 shots are collected
 - Large shot to shot mean orbit variations are observed in both
 - Horizontal shows larger RMS than vertical -> Beam related

- Single shot RMS is much smaller than shot to shot orbit variations
 - Plotted as mean shot RMS with variation on RMS as error bars
 - Observe larger RMS in Horizontal than Vertical -> Beam related
 - Data with Calibration has larger RMS than without Calibration

- Fermilab
- Use Singular Value Decomposition to look for correlated motion and estimate resolutions
 - Ignoring beam effects, the horizontal and vertical resolution of the pickup/electronics should be the same...

- See much larger residual RMS in Calibrated Data
 - Still 6um Horizontal and 4um Vertical after removing first 15 modes!
 - Something is not working correctly with Calibration...

- Fermilab
- Perform same analysis on Data taken with Echotek system 12/07
 - 48 shots were analyzed with 21 BPMs instrumented
 - See resolution of 540nm after removing 7 modes
 - Largest mode is all Horizontal

Fermilab

- Perform the same statistical analysis on new data
 - Use 48 shots and the same 21 bpms as in the echotek system
 - Resolution is 390nm after removing 8 modes
 - Larger initial variations and all modes are mixed Horizontal/Vertical

- The Damping Ring BPM upgrade installation is now complete and commissioning has begun
 - Major change to digitizer clock during commissioning
- The Narrowband Orbit data and Turn by Turn data are available
- Preliminary Analysis of the Narrowband data
 - Horizontal RMS > Vertical RMS -> measuring beam not noise!
 - Clear problem with the Calibrated orbit data
 - Should be resolved before operation resumes
 - Large shot to shot orbit variations...
 - Variations are larger than observed with Echotek system in 12/07
 - Simple estimate of system resolution from shot to shot data is slightly better with new system
- Results from Turn by Turn Analysis are presented next

- Continue Commissioning the system
 - Optics and Machine studies more analysis needed
 - Determine resolutions for all measurements
- Update the position scaling for the injection bpms
 - Use correct bpm geometry for bpms 20 & 21
- Investigate odd behavior of bpm 53
 - Flagged by SVD and TBT analysis
- Implement a history for the calibration data
 - Allow tracking of channel performance
 - Show large drifts which may indicate impending failure
- User requests?

- New read-out hard-, firm- and software, BPM pickups (button-style) stay unchanged.
- R&D activities over the last couple of years on 20 BPMs in the arcs, utilizing mixed analog/digital signal processing
 - Test of different analog downconverters (w/o CAL)
 - Digital signal processing based on spare *Echotek* digital receivers.
- Final upgrade scenario (96 BPMs, plus spares)
 - 714-to-15.1 MHz analog downconverter with CAN-bus controlled calibration tone, located in the tunnel.
 - VME hard- & software, in 4 rack locations
 - 8-ch. 125 MSPS digitizer with an Altera Cyclone III FPGA
 - 12 ch. VME timing generator (Fermilab).
 - Motorola 5500 VME controller, with CAN-bus interface, running VxWorks & EPICS software
 - Auxiliary hardware, e.g. power supplies and distribution, LO-signal distribution, CAN-bus distribution, etc.