

TLCC Themes

Positron Source Re-Location

- A <u>relocation of the positron source systems</u> from the nominal 150 GeV point of the electron Main Linac <u>to the exit of the electron Main Linac (≤250 GeV depending on physics scenario)</u>, and <u>integrated into the beginning of the Beam Delivery System</u>.
- The <u>new baseline proposal includes</u> a description of a possible low energy operating scheme. The scheme (10 Hz running, alternate pulse) is consistent with the RDR.
- The <u>positron yield is ≥ 1.5 over this energy range</u> and enables operation with the RDR parameters or the 'Reduced Beam Parameter Set.'

Rationale (Benefits)

- Consolidation of all sources in 'central region' campus area
- All high radiation sources now contained in this area
- Combined machine protection systems for narrow bandwidth systems (BDS and e+ source)
- All energy acceptance 'bottlenecks' are now located in central region
 - Entire SCRF linac now has large acceptance
- There is a large energy overhead to drive the source
 - risk mitigation during early commissioning years
- At >300 GeV CM there is >1.5 yield margin
 - constrained at some point due to target power handling

The Down Side

 Ecm ≤ 250 GeV requires additional measures to maintain yield

- Proposed 10Hz alternate pulse scheme (150/125) (see later)
- While not necessarily an elegant solution, it appears technically tractable
 - small cost incursion (mostly) for DR
 - other possibilities being considered (high-field short-period undulator tech. R&D)

"10 Hz" Alternate Pulse Mode

Damping Ring – solution OK

- Requires reduction in damping time by ×2
- Additional wiggler and RF (cost)
- Additional photon stops (minor cost)
- e+ ring 50% duty cycle requires special (LLRF) attention (15%) additional RF power for control)

(Electron) Main Linac

- Alternate energy pulsing (150/125 GeV)
- No additional AC power or cryo required
- Different approach for KCS/RDR and DRFS

Linac exit (source/BDS)

- Pulsed corrector magnets to correct ~mm of beam offset for 150 GeV beam
- Additional extraction line for e+ production pulse
- Dealing with unwanted photon pulse (to do)

CFS requirements evaluated and included in cost increment

Physics Impact: Polarisation

- Reduction from ~30% to 20% due to 'shorter undulator' scenario
- Reducing B field (const. L) will restore 30%

Cost Impact

• Approx. Cost of 10Hz Alt. +0.6 %

Approx. Cost of moving source -0.6 %

• Net cost ±0.0%

Primary motivation for this proposal is not cost.

 Note high-field short-period undulator would be more cost effective

TLCC-4 Proposal Document

- Authored by PMs
- Scope points from slides 2
- More detailed description of technical scope
 - DR and HLRF parameters
 - Component count tables

Issues

- More detailed layout of source area
- More detailed evaluation of DR LLRF solution (possible R&D items)
- Physics impact (short summary) ??
 - polarisation ??
- Cost Summary

To be submitted to Director by end of next week