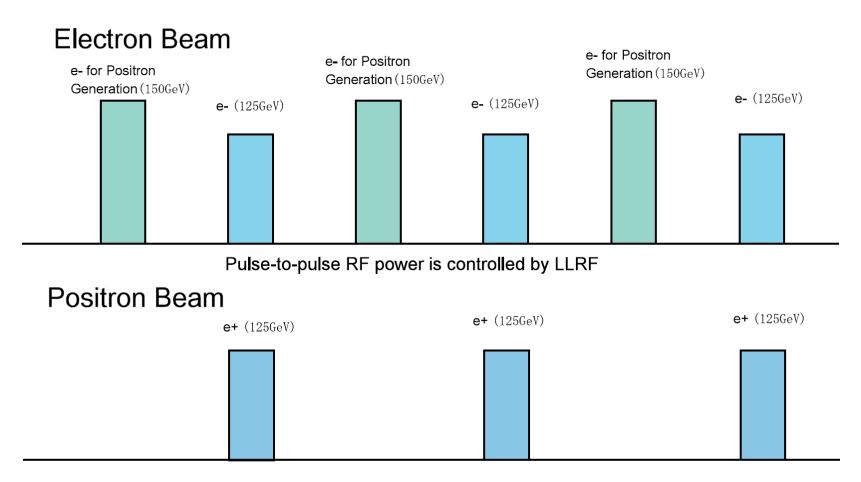


purpose:

not to generate a new ILC estimate, but to facilitate SB2009 decisions Peter H. Garbincius, Fermilab BAW-2, SLAC, January 21, 2010 Iast modification – 21jan2011 – 1130 PST filename: PHG-BAW_Cost_Impact_10Hz.ppt

Outline of this presentation


- call it: 1 + 125x125 normally: 250x250
- factorize: 1 + 125x125, then Centralized e+ Source
- pulse structure starting point
- limitations in this analysis
- Impact Matrix, more details for e- ML & DRs (τ_{damp})
- Cost Impact Table for 1 + 125x125
- My hallucinations on Centralized e+ Source
- A little bit clearer picture
- Cost Impact Table for Centralized e+ Source
- Summary

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

ic 150 + 125*125 @ 5 Hz

- Today's question: how much *more* will it cost to provide this extra capability?
- I'll concentrate on ML and DR for this presentation and then add cost impact of moving Positron Source to 250 GeV in e- ML
- e- DR must produce 2 pulses every 200 msec, which is 10 Hz
- e+ DR must produce 1 pulse every 200 msec, which is 5 Hz. It has a 50% RF duty factor, which will increase its PEAK RF power required by ~15% - S. Belomesnykh, Geneve, Oct 2010

Nice illustration that I'll "borrow" from Shigeki!

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

ΪĹ

I will *not* consider impacts of this 150 + < 125x125 pulsing at *full* # of bunches – per Nick Walker's BAW-2 instructions

Although there has been much discussion of "optimizing" the length of the undulator and choice of either quarter-wave transformer or flux concentration as collection stage of the positron source, I will assume a *single* choice will apply to the cases under consideration and therefore there is *no cost differential*.

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

IC Cost Impact Matrix for 150 + < 125x125 relative to 250x250 @ reduced # bunches

150 plus	Tech.	RF	Cryo	Civil	Civil	Civil	Electrial	Thermal	Notes
125*125	Comps.	Power	Power	Tunnels	Cavern*	Buildings	Power	Cooling	* includes alcoves & tunnel widenings
e- source	V	V	V		?		V	V	must provide 10 Hz pulses
e+ source	V				V		V	V	none, no extra load on γ target/dump
e- DR	V	V	V				V	V	provides 150 and <u><</u> 125 GeV pulses
e+DR	V	V	V				V	V	needs more peak RF power for 50% df
e- RTML		V	V				V	V	must double pulse BC-1
e+RTML									no impact
e- ML (&BC2)	v	V	V			KCS	v	V	must provide 125 and \leq 125 GeV pulses
e+ ML (&BC2)									no impact
e- BDS				V	V			V	MPS & spent 150 GeV e- beam to dump
e+BDS									no impact
Exp Hall									no impact
Common							V		only Master Substation

- Major costs are for e- Main Linac & both Damping Rings, so we will concentrate only on these systems
- Different civil construction (enclosures) for e+ Source
- e- Source, e- RTML (BC-1) and e- BDS (dump only) have small increased power ~ small extra costs

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

Chris A – minor impact on RF

• More details and discussion in backup slides

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

RF & wigglers for DRs conventional components are the same

	lattice	SB2009		SB2009	SB2009	
		LowP 5 Hz		LowP 10 Hz	LowP 10 Hz	
	beams	e+/e- ea		e+Ring	e- Ring	
	reference-page	4-11,30		4-28,30	ref 4 p 30	
	Circumference (m)	3238		3238	3238	
	# bunches per DR	1305		1305	1305	
	damping time ms	24		13	18	
RF Voltage MV/DR		7.5		13.4	10.4	
	# RF cavities/DR	6		9	9	
	# klystrons/DR	2		3	3	
	Wiggler B (Tesla)	1.6		2.4	2.4	
	Wiggler period (m)	0.4		0.28	0.28	
	Wiggler lgt ea (m)	2.45		1.72	1.72	
	Wiggler lgt/DR (m)	78		75	75	
	# wigglers/DR	32		44	44	
	tab: DR-info	different wi	gglers			

different wigglers assume same cost - MP

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

SR photon absorbers in wigglers

- cost estimates were not included in RDR or in any of the SB2009 and BAW-2 analyses
- Hope that they cancel in the differential cost sense...

ir

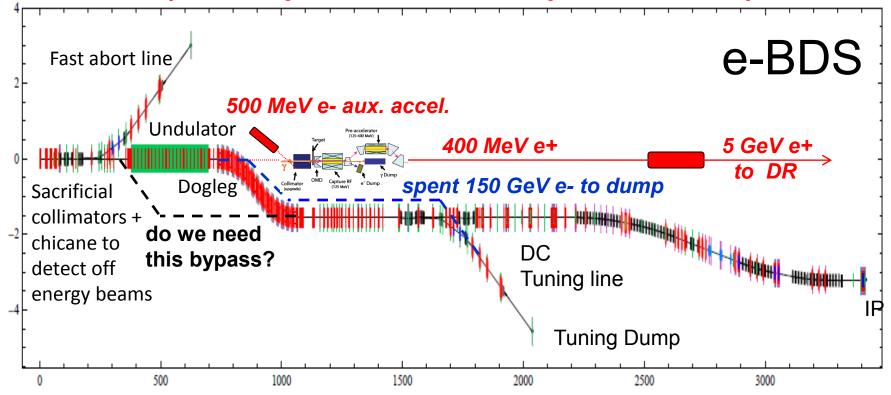
Cost Differentials for ML & DR

1312 bunches	250x250		150+125*125		Cost	Notes
		Cost		Cost	diff	
	Quantity	M ILCU	Quantity	M ILCU	M ILCU	
Main Linac - KCS						
modulators & PS for e- ML	499/2	76.9	499/2	77.0	0.2	ChrisJ estimate (+0.2%) & ChrisA note
cryogenics plants e- ML	5*4.12 MW		5*3.35 MW		0	lower, so no impact
cryogenics plants e+ ML	5*4.12 MW		5*2.65 MW		0	lower, so no impact
RF power	66 MW		59 MW		0	no impact, PHG => Emil 12jan2011
other electrical power	54 MW		54 MW		0	same, no impact
thermal cooling	64 MW		57 MW		0	lower, so no impact
Damping Rings - 2 rings - 3.2	km					
technical components		276.3		298.4	22.1	see detailed RF & wiggler change list
cryogenic plant e- DR	1.18 KW 4.5K	3.5	1.64 KW 4.5 K	4.3	0.8	100% df + 2*50% duty factor
cryogenic plant e+ DR	1.18 KW 4.5K	3.5	1.55 KW 4.5 K	4.1	0.6	100% duty factor & 50% duty factor
cryo accessories e- DR		3.1		3.1	0	same, no impact
cryo accessories e+ DR		3.1		3.1	0	same, no impact
cryo distribution e- DR		4.2		4.2	0	same since # end boxes the same
cryo distribution e+ DR		4.2		4.2	0	same since # end boxes the same
CFS: Civil		107.3		107.3	0	same, no impact
CFS: Electrical Power	12.8 MW	16.3	16.8 MW	17.4	1.1	CFS did this better than PHG's \textbf{P}^{α}
CFS: Thermal Cooling	8.5 MW	24.1	12.4 MW	28.2	4.1	CFS did this better than PHG's P^{β}
e- Src - Modulators & PS					1.2	need to double pulse, same E
e- Src - Electrical & Cooling					3.2	PHG guess/scale for RF & Cryo
e- Cryogenics capacity					2.9	2X dynamic cryogenics load
e- RTML Modulators & PS					0.2	need to double pulse BC-1 at 5 GeV
e- RTML Electrical & Cooling					0.2	PHG guess/scale for RF & Cryo
e- RTML Cryogenics capacity					0.4	2X dynamic cryogenics load

tab: 10 Hz summary

total increase =

37


M divide by 6,618 M ILCU = +0.56%

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

C' Source at 150 GU point = ROR(1) = SINGLE TUNNER ROM Cost Difference for at 250 Gu point = SB2009 PAG- 22 Nov 2010 Shaft for 64502 (1.5m) I shaft for Rationof Shet Ref: ILC-, CE-1. 1649.0016 - 5000 2006 ROR(1) Soomer KAS Shafts Shaft 5.2 (14m) (42) yoomed EML TO ISD GOV Rediger Inve MATCON CHandling INJETT Y NDR UNDULLA 400 Mevet "lastection" mi L = JANE M -10 400000 560 " Protting " BYPASS ? EML 150 + 250-50 64 Bes × ×××××××××××× NO SERVICE TUNNEL ********** -Service WMM top et Source -NO SPRVICE TUNNAL forML SPRUICE TUNLEL ? Dors it include "Protection" + unoucator + Droft ton ML FOR BOS + KAS Shatts (14mi) IS IT Beam. ON Accessible ? SPIL at 150 GN shaft ton Redearder HANDLING (4107) Shaftplaser (1,5m) Shaft 3 (14m) DOM SAME LEWETH UNOVICTOR + Sama QUIT fun RDA(i) + SA2009 3.3 50 otter source yound 250 GV et PROTEDS INJELI TO DA UNDURADE 400 Mey of LOWELISDEN L= SAME 5600 C BROWN TO IP "SPENT" ISO GUE ******* NO SPRINCE NUMPE SRML SCRUCE NANA FOR C+ SDURCE+ GAS DOPS IT INCLUDE Protector + UN DUICH + Driff? TUNNICS 532009 diff ROR(1) Bear for 15000 83272 7969. m 358 m Rot 3594 nm Stavicetand 3236 m 3582 SB2009: 6-11- BCD - 20NON 2009 INC Protection I TUT Undelater 11.921m 11,205m 716m Some in consistencies with Norther COLLOMB- 12 July 2010 chavings 8 dr.H/dgenc BUT watch TUNNEL WIDENNUS! ILC - Global Design Effort Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

neater optics sketch for Centralized Positron Source

positron system is schematic only: not to scale or position

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

İİL

iii cost impacts of moving of e+ source

Cost Differentials for Centralized e+ Source - M ILCUs	Savings	Additions	Notes:
one set of MPS sacrifical collimators, abort, & dump	???		never estimated for RDR
301 m tunnel (for above)	3.0		
301 m tunnel widening (for above)	4.7		
4 m dia rad material handling shaft & grouting	9.5		
Radioactive Materials Handling & Storage Bldg	3.1		
KAS e+ target station & acceleration to 400 MeV	28.2		- see next page for details
electrical power	???	???	not considered yet by CFS
thermal cooling	???	???	not considered yet by CFS
spent 150 GeV e- from undulator => dump 1,166 m			to e- tune up dump or to e+
dogleg, min FODO, min instrumentation, rastering?		???	primary dump (backwards)?
100 msec beam switches		???	
corrector magnets for dual energy trajectories		???	
LET bypass around undulator for beam to I.P. (620 m)		???	- do we need/want this?
total change (= savings minus additions) - M ILCU	48.5	???	MILCU

150 + 125x125+ 37 M ILCU (more)Centralized e+ Source $- 48 \text{ M} \pm ???$ tab: needsSummary $- 11 \pm ?? \text{ M ILCU}$

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

IC RDR Keep-Alive Source Estimates

John Shepard - RDR	K ILCU - 2007	Notes
•		
KAS laser (0.5)	0	· · · · · · · · · · · · · · · · · · ·
KAS gun (0.5)	0	also needed for aux. source, no differential
Sub-Harmonic Buncher (2)	0	also needed for aux. source, no differential
500 MeV KAS e- accelerator	0	also needed for aux. source, no differential
everything below was needed for	or second e+ p	roduction station & acceleration to 400 MeV
e+ production target	3,937	
Adiabatic Matching Device	2,329	
Target & AMD housing/shield	1,123	
SW Cavities (2)	124	
TW Cavities (12)	3,097	
Warm Station High Level RF (14)	10,839	
SW HL RF distribution (2)	380	
TW HL RF distribution (12)	1,388	
Controls - pro-rated	657	
KAS Instrumentation	968	
KAS Dumps & Collim	210	
KAS Vacuum	780	
KAS Conventional Magnets	1,177	pro-rate KAS magnet costs from PS costs
KAS Power Supplies	1,180	
totals	20 1 00	

tab: needs

totals

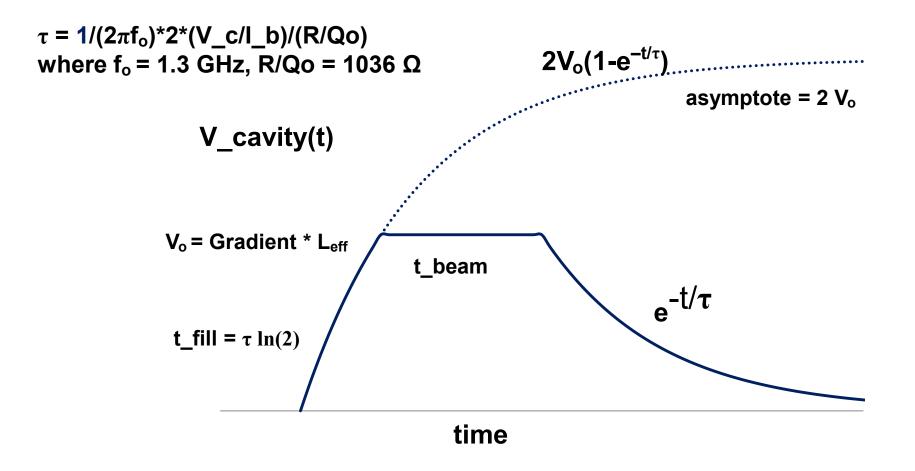
28,189 K ILCU - 2007

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

Backup Slides

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

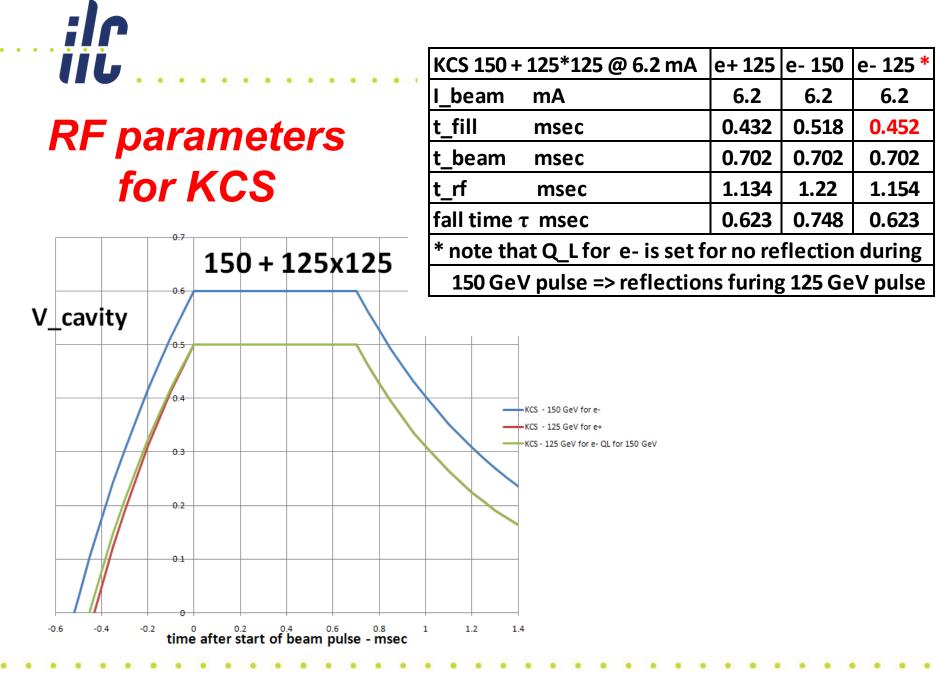
İİĹ


ic (skip) quick thoughts on e- ML power

Remember that we started with capability of one e- ML pulse at 250 GeV, and now we are considering the maximum of 150 GeV + 125 GeV (gross sum = 275 GeV), but we have to look at details of three things:

- relative widths of t_fill, t_beam_ and t_r these will affect total power and cooling and cryogenic plant power due to dynamic cryogenic loads in the cavities
- efficiencies of klystrons running at 60%/50%
- capabilities of modulators and power supplies
- RF parameters and Q_L optimized for 150 GeV, will not be matched at E < 150 GeV (reflections)

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011


RF pulse for constant klystron power

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

DRFS for 150 + < 125x125

- Shigeki just sent 110115A on Sunday, Jan 16 which said, "In the case of low-energy 10 Hz case, DRFS HLRF hardware configuration is the same as SB2009 and not cost change."
- Shigeki did *not* send power and cooling requirements for 150 + 125x125 to CFS
- I didn't see Shigeki's presentation until yesterday
- Shigeki previously said details with new estimates
 will not be available until Summer 2011
- So I can't say too much more on DRFS...

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

KCS parameters for 150 + 125*125

- Keep t_beam = 0.702 msec, I_beam = 6.2 mA
- Need parameters: does t_fill change between 150 and 125?, ChrisN (1/12) and ChrisA (1/14) has for constant power klystron output pulse t_fill(150 GeV) = 0.517 msec
 - $t_fill(E)/t_fill(150 \text{ GeV}) = ln(1+E/150 \text{ GeV})/ln(2)$
 - $t_fill(125 \text{ GeV}) = 0.874 t_fill(150) = 0.452 \text{ msec}$

reflected power ratio = (1/4)*(1-E/150)^2 ~ 0.7%

ic Dependence of Cryo Dynamic Loads

RF load ~ V_{cav}^{2} *(t_{beam} +1.11* t_{fill}) Input Coupler load ~ V_{cav}^{*} (t_{beam} + t_{fill})* I_{beam} HOM (beam) load ~ I_{beam}

Don't ask, I don't have simple breakdown by dynamic load component, or even dynamic to static sum, only listed as function of coolant temperature (2 K, 5 K, 40 K)

Cryo Loads: Full Power (both) 10* 4.42 MW Reduced # bunches: KCS 10* 4.12 MW DRFS 10* 4.72 MW

Low Energy Operations PHG - BAW-2 SLAC - 21jan2011

one miniscule correction

- ChrisN incorrectly had ln(1+sqrt(E/150))/ln(2) which gave t_fill(125 GeV) = 0.483 msec, instead of 0.458 msec when Q_L is set for 150 GeV which TomP used for the cryogenics dynamic load for 125 e-What is the difference for e- beam?
- P^{cryo}_{dynamic}(0.483 msec) = 10 x 3.55 MW X
- $P^{cryo}_{dynamic}(0.458 \text{ msec}) = 10 \times 3.54 \text{ MW} \sqrt{100}$