

KCS Development and Consideration of KCS/RDR Operation with Reduced Bunch Number

Christopher Nantista

ILC 2nd Baseline Assessment Workshop (BAW-2)

SLAC

January 18, 2011

Klystron Cluster System Basic Layout

KCS Shafts and RF Units per KCS

With 12 rf units from the RTML added to each of the main linacs and 4 more in the e-linac than the e+ linac for undulator losses, they have **294** and **290** rf units, respectively. The following would seem to be a reasonable modified KCS layout.

Combining and Distributing Power

Couplings ranging from $\sim 1 \text{ to } 1/33 \text{ to the TE}_{01}$ (low loss, no surface E-field) mode are required.

"3-port" coupler

$$\mathbf{S} = \begin{pmatrix} 0 & \sqrt{C} & \sqrt{1-C} \\ \sqrt{C} & (1-C) & -\sqrt{C(1-C)} \\ \sqrt{1-C} & -\sqrt{C(1-C)} & C \end{pmatrix} \quad \mathbf{1} \bullet \bullet \mathbf{3}$$

For combining, the tap-offs are installed backwards. Proper phase and relative amplitude needed for match (mismatched power goes to circulators).

A pair of 3-dB CTO's.

A CTO connecting WR650 waveguide to 48cm-diameter circular waveguide.

Main Waveguide Bends

For KCS, we need to bend the main rf waveguide at full power through multiple 90° bends to bring it down to and along the linac tunnel. Demonstration of such a bend is crucial to establishing the feasibility of KCS.

Though we've considered other options, including a more compact design with significantly higher surface fields, the leading contender is a scaled modification of the following X-band SLAC design*.

Smooth, properly spaced circular-elliptical and elliptical-rectangular tapers convert the circular TE_{01} mode into the rectangular TE_{20} mode, which is preserved around a swept bend.

Local RF Power Distribution Scheme

Power from each CTO is distributed along a 3-CM rf unit containing 26 cavities through a local PDS. Distribution is tailored to accommodate gradient limits of cavities.

Original VTO (Variable Tap-Off) Pair-Feeding Concept

- manually adjustable by pairs
- requires pair sorting
- circulators can be eliminated

Alternate Scheme w/ Folded Magic-T's and Motorized U-Bend Phase Shifters

- remotely adjustable by pairs
- requires pair sorting
- circulators can be eliminated

Folded Magic-T's and Motorized U-Bend s for Each Cavity

- remotely adjustable by pairs
- no pair sorting required

Peak RF Power Required from Klystrons per 27 RF Unit KCS (full current)

```
294.3 kW
                     (nominal to beam per cavity = 31.5 MV/m \times1.038m \times 9 mA)
\times 1.059
                     (for flat gradient w/ cavity gradient spread and common timing)
                     (for statistical spread in feed/rf unit requirements w/ fixed couplings)
\times 1.062
                     (cavities/rf unit)
\times 26
                     (~5% local distribution losses) = 9.06 MW/rf unit @ CTO
\div 0.95
                     (rf units)
\times 27
\div 0.935
                     (6.5% main waveguide losses) = 271.3 MW @ beginning of linac run
                     (shaft and bends)
\div 0.983
                     (combining CTO circular waveguide losses)
\div 0.993
\div 0.965
                     (input circulator and WR650 losses)
                                                                               klystron-to-tunnel
                     (CTO coupling/klystron amplitude mismatches)
÷ 0.977
 284.2 MW
                    from klystrons
```

Klystrons Needed per 27 Unit KCS (full current)

The calculation/estimate suggests we need 284.2 MW worth of klystron power. At 10 MW each, 29 klystrons would give us 290 MW (2.0% to spare).

However, we want to be robust against a <u>single klystron failure</u> per system. With N sources combined in a passive network, failure of one source leaves combined the equivalent of $(N-1)^2/N$ sources.

With 31 klystrons and 30 on, we have 290.3 MW available (2.2% to spare).

However, we also need 7% (5% usable) overhead for LLRF to be harnessed via phase control of the rf drives, oppositely dephased in pairs, such that the combined power is reduced as $P = P_{\text{max}} \cos^2 \phi$, with ϕ nominally 15°.

The maximum power requirement rises to $284.2 \text{ MW} \div 0.933 = 304.6 \text{ MW}$,

The maximum power requirement rises to 204.2 livivi . 0.333 - 304.0 livivi

With 33 klystrons and one off, we have 310.3 MW (1.9% to spare).

(30 klystrons for the 24 unit KCS and 25 klystrons for the 20 unit KCS)

TOTAL: $20 \times 33 + 30 + 25 = 715$ klystrons installed (693 on)

27 Unit KCS Average Power Diagram

Reduced Beam Current

Halving the number of bunches in the ILC beam pulse is considered as a way to reduce the (initial) cost of the machine. The direct impact on the luminosity might be ameliorated by introduction of a traveling focus scheme. In this reduced beam current "low power" scenario, site power is reduced, along with water cooling requirements.

Additionally, for the high-power rf system, the amount of **installed rf** production equipment can be significantly **reduced**.

The impact depends on the bunch frequency, f_B , which affects:

beam pulse current: $I_b = N_e e f_R$

beam pulse duration: $t_h = (n_B - 1) f_B^{-1}$

rf power per cavity:
$$P_{rf} = I_b V_c = N_e e V_c f_B$$
 rf pulse duration:
$$t_{rf} = t_i + t_b = \left[\frac{2 \ln 2}{\omega N_e e R / Q} V_c + (n_B - 1)\right] f_B^{-1}$$

KCS Low Power

KCS is very *flexible*. Combining tens of klystrons allows us to adjust installed power with relatively fine granularity.

Fixed t_b : Simply eliminating every other bunch (halving f_B) maintains the beam duration and halves the *current*, cutting in half the required peak power. However, it also doubles the cavity fill time. , thereby increasing the required rf pulse width at full gradient by 38%. ($P_{rf} \rightarrow \frac{1}{2} P_{rf0}$, $t_{rf} \rightarrow 1.38 t_{rf0}$)

Fixed t_{rf} : It's preferable to adopt parameters which allow use of the modulators and klystrons developed for full RDR beam specifications, i.e. to stay within the ~1.6 ms pulse width. This can be achieved by reducing the bunch spacing to increase the current to **0.69** I_0 . The rf peak power required at the cavities is reduced from that for the full beam by this factor. $(P_{rf} \rightarrow 0.69 \ P_{rf0}, \ t_{rf} \rightarrow t_{rf0})$

Klystrons Needed per 27 Unit KCS (1/2 bunches)

Scaling from the full current case, we need (0.69×284.2=) 196.1 MW worth of klystron power. At 10 MW each, 20 klystrons would give us 200 MW (2.0% to spare).

However, we want to be robust against a <u>single klystron failure</u> per system. With N sources combined in a passive network, failure of one source leaves combined the equivalent of $(N-1)^2/N$ sources.

With 22 klystrons and 21 on, we have 200.5 MW available (2.2% to spare).

However, we also need 7% (5% usable) overhead for LLRF to be harnessed via phase control of the rf drives, oppositely dephased in pairs, such that the combined power is reduced as $P = P_{\text{max}} \cos^2 \phi$, with ϕ nominally 15°.

The maximum power requirement rises to $196.1 \text{ MW} \div 0.933 = 210.2 \text{ MW}$,

With 23 klystrons and one off, we have 210.4 MW (0.12% to spare).

(21 klystrons for the 24 unit KCS and 18 klystrons for the 20 unit KCS)

TOTAL: $20 \times 23 + 21 + 18 = 499$ klystrons installed (477 on)

30.2% reduced from full current

RDR-Like Fallback Low Power

With the KCS and DRFS schemes in development, an RDR-like layout w/ 10 MW klystrons, modulators, etc. in the (enlarged) single tunnel is considered the fallback plan.

For half bunches operation, one could double the bunch spacing and install half the modulators and klystrons, each feeding 6 CM's, rather than 3.

This would double the fill time, **increasing** the required **rf pulse** width by 38%. The installed modulators and klystrons would then be overspec.ed for the upgrade.

Alternatively, one could install 2/3 of the rf production equipment, with each klystron feeding 4 ½ CM's.

This would reduce the available power per cavity, and thus the acceleratable beam current or bunch frequency, by a factor of $\sim 2/3$ vs. RDR.

The beam pulse duration ($\propto n_B/l_b \rightarrow \frac{1}{2}$ / 2/3) is then shortened by a factor of $\frac{3}{4}$, and the fill time increased by a factor of 3/2, yielding an rf pulse width increase of only $\sim 3.5\%$.

Parameter Summary

250 GeV/beam	# of bunches	bunch spacing	beam current	beam duration	rf peak power	fill time, t _i	rf pulse duration
full beam	2625	369.2 ns	9 mA	0.969 ms	294.2 kW	0.595 ms	1.564 ms
½ bunches A	1313	738.5 ns	4.5 mA	0.969 ms	147.1 kW	1.190 ms	2.159 ms (up 38%)
½ bunches B KCS	1313	535.1 ns	6.21 mA	0.702 ms	203.0 kW	0.862 ms	1.564 ms
½ bunches B RDR	1313	553.8 ns	6 mA	0.727 ms	196.1 kW	0.893 ms	1.619 ms (up 3.5%)

Parameter choice also impacts cryogenic load.

^{*} Only includes dynamic load of fundamental rf in cavity. Additional contributions come from coupler (linear w/ power and time) and HOM (current dependent).

Installation for Reduced Bunches

KCS:

- Everything in the tunnel is installed.
- 69.8 % (499/715) of high power rf production equipment (klystrons, modulators, power supplies, etc.) in KCS surface buildings, *upstream* from shaft, with main waveguide runs traversing the region where the rest will go.
- 68.8% (477/693) of "wall plug" power for main linac high power rf.
- 75%* of water cooling capacity for heat load from high power rf.

RDR-Like Fallback:

- 66.7 % of high power rf production equipment in the linac tunnels, with additional power dividers and waveguide.
- 69% (1.035 \times 2/3) of "wall plug" power for main linac high power rf.
- ~ 75%* of water cooling capacity for high power rf heat load.

* full current

rf power: P_{rf0}

beam power: $P_{b0} = 0.23P_{rf0}$ (see slide 9)

heat load: $P_{h0} = P_{rf0} - P_{h0} = 0.77P_{rf0}$

1/2 bunches

rf power: $P_{rf} = 0.69P_{rf0}$

beam power: $P_b = 0.5P_{b0} = 0.115P_{rf0}$

heat load: $P_h = P_{rf} - P_b = 0.575P_{rf0} = 0.747P_{h0}$

Heat Load Breakdown for KCS

The rf energy deposited per pulse into the cavity reflection loads (circulator loads), being the product of P_{rf} (∞I_b) and t_i (∞I_b^{-1}), is, for a given gradient, constant across the parameter sets.

<u>HPRF heat load distribution</u> (from slide 9):

above ground – 68.3%

below ground – 31.2% (65.7% fixed, 34.3% power dependent)

HPRF heat load reduction factor:

above ground - 0.69

below ground $-(0.657 + 0.343 \times 0.69) = 0.894$

Total – $(0.683 \times 0.69 + 0.312 \times 0.894) = 0.750$

For the RDR-like layout the total reduction is the same, 0.75, all below ground.

Transition to Full Beam Current

KCS:

- Upgrade is all above ground.
- Install remaining 31% of "wall plug" power capacity.
- Install remaining 25% of cooling capacity.
- Install remaining 30.2% of high-power rf hardware in the *KCS buildings*. Most, up to the point of connecting the sources into the main waveguide, can be done while *running*.

RDR-Like Fallback:

- Install remaining 31% of "wall plug" power capacity.
- Install remaining 25% of cooling capacity.
- Install remaining 33.3 % of high-power rf hardware in the *linac tunnels*. ILC is *shut down* during installation.