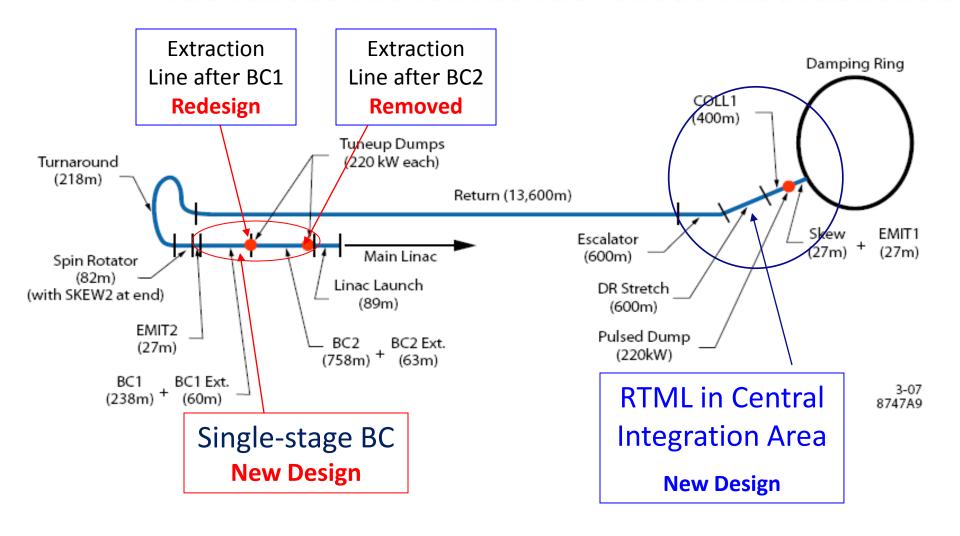


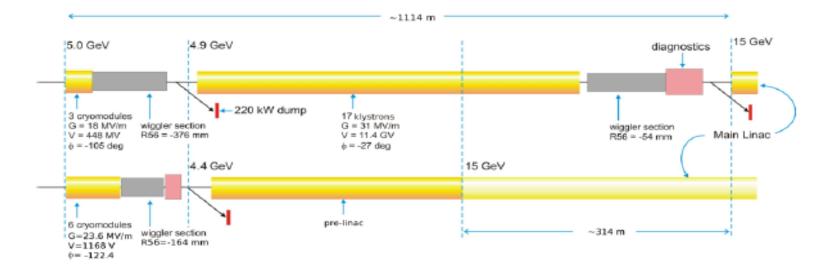
SINGLE-STAGE BUNCH COMPRESSOR FOR ILC-SB2009

Nikolay Solyak Fermilab


GDE Baseline Assessment Workshop (BAW-2) SLAC, Jan. 18 -21, 2011

BAW-2, SLAC, Jan.18-21, 2011

Outline


- Motivation and Lattice description
 - Parameter choice and optimization
 - Tuning flexibility for shorter bunches
- Performance overview
 - Comparison single-stage BC vs. two-stage BC
 - Performance of entire RTML (SB2009 design)
 - Issues for 10 Hz operation
- Other changes in RTML (SB2009)
 - New Extraction Line and Beam Dump
 - RTML lattice in Central Area
 - RTML LET start-to-end Simulation (emittance budget)
- Summary / Conclusion

RTML changes in SB2009 vs. RDR

ΪĹ

What do we gain or loose with BC1S ?

- What do we gain
 - Reduction in beamline and associated tunnel length (314 meters)
 - Removal of the second 220 kW/15 GeV beam dump and extraction line components
 - Removal of one section of the beam diagnostics
- What do we loose
 - Less flexibility
 - Larger energy spread at BC exit
 - Emittance preservation and additional tuning issues (see DFS in the main linac)

SB2009 Beam Parameters

- \Rightarrow Damping Ring exit bunch length is fixed to 6 mm
- \Rightarrow Single-Stage Bunch Compressor \Rightarrow final bunch length fixed to 300 $\mu{
 m m}$
- \Rightarrow Main Linac starts at 4.4 GeV
 - Dampig Ring exit

Property	Symbol	Value	Unit
Energy	E_0	5	GeV
Bunch charge	Q_0	3.2	nC
RMS bunch length	σ_0	6	mm
RMS energy spread	σ_E/E_0	0.15	%
Normalized emittance	$\epsilon_{\eta,x}$	10'000	nm
	$\epsilon_{\eta,y}$	20	nm

Main Linac entrance

Symbol	Value	Unit
E_0	4.4	GeV
Q_0	3.2	nC
σ_0	300	μ m
σ_E/E_0	3.4 (1.07*)	%
$\epsilon_{\eta,x}$	< 12'000	nm
$\epsilon_{\eta,y}$	< 25	nm
		E_0 4.4 Q_0 3.2 σ_0 300 σ_E/E_0 3.4 (1.07*) $\epsilon_{\eta,x}$ < 12'000

İİĹ

RF-System Description

 6 Type-4 cryomodules (quadrupole in the middle) in a fodo lattice with 90 degrees phase advance per cell

<u>Characteristics</u> of the rf-system compressor are:

Integrated voltage	1,332 MV @ 1.3 GHz
Cavity gradient	≈26.8 MV/m
Accelerating Structures	48 (6 Type-4 cryomodules)
Phase	-127.7 degrees
Energy Loss	815.2 MeV

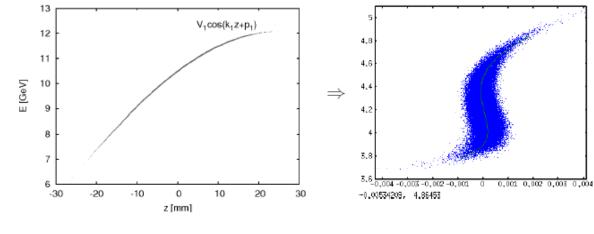
- Design is optimized (RF phase, acc gradient, R₅₆) to achieve:
 - \Rightarrow final bunch length : 0.3 mm
 - \Rightarrow energy spread at ML entrance (baseline): 1.07%

(BC1+BC2) vs. (BC1S+preLinac)

	BC1+BC2	BC1S+preLinac
Length [m]	1114	800
RF units/klystrons	16/17	14(*)
Cryomodules	48	42
Cavities	414	360
Quadrupoles	88	61
BPMs	84	59

(*) No spares in BC1S (Klystrons and CM) so far

BC1 Instrumentation	BC2 Instrumentation (BC1S)
phase monitor, bunch length minitor, LOLA profile monitor	phase monitor, bunch length minitor, LOLA profile monitor
	4 laser wires


:Ir

İİĻ

Compression from 6mm to 200 µm

Many efforts have been done to compress bunches down to 200 µm with a single-stage BC

- Major problems are the intrinsic non-linearities of the system:
 - off-crest RF-phase

-
$$T_{566}
eq 0$$
, for a wiggler $\Rightarrow T_{566} pprox -rac{3}{2}R_{56}$

Minimum bunch length achieved ~250 µm

In order to obtain bunches shorter than 250 μ m we have to reduce T_{566} by introducing:

• sextupoles

• 3rd harmonic cavity

R56	STD	STD+3 rd	STD+Sextupoles	STD+3 rd + Sextupoles
-0.120	249	226	234	220
-0.100	241	223	237	236

*STD - current single-stage compressor design (standard)

Emittance growth due to misalignments

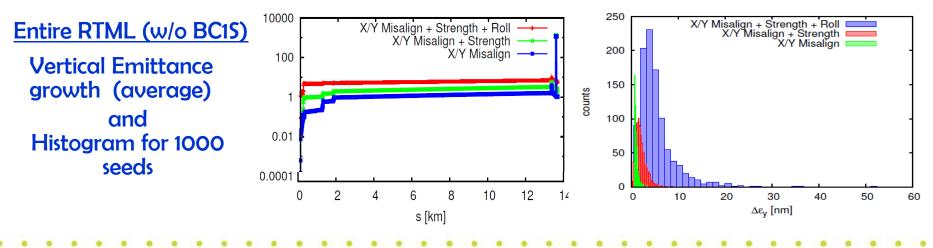
 Nominal errors and BPM resolution Couplers are considered BC1S: All misalign, final vertical emittance after correction Vertical emittance along BC1S BC: All misalign + Couplers, Δφ=5⁰, BPM_{res}=1 μm, 100 machine counts [#] 1e+07 no cor 1-to-1 1e+06 dfs_w=32 dispersion bumps girder pitch د_v [nm] BC1S: All misalign+Couplers, final vertical emittance after correcti counts (#) 0.1 s_v [nm] s [m]

→ Final vertical emittance growth is ~2.3 nm (average over 100 machines)

İİĹ

Δε [nm]

Summary Tables for the Bunch Compressors


These simulations:

Region	Errors	Emittance Increase (nm)		Correction
		average	90% CL	
BC1+BC2	X/Y/X'/Y' Offsets	0.98	1.6	DFS + knobs + Girders
	+ Quad Strength	-	-	DFS + knobs + Girders
BC1+BC2 w/Couplers	X/Y/X'/Y' Offsets	1.09	1.48	DFS + knobs + Girders
	+ Quad Strength	-	-	DFS + knobs + Girders
BC1S w/Couplers	X/Y/X'/Y' Offsets	2.3	-	DFS + knobs + Girders
	+ Quad Strength	-	-	DFS + knobs + Girders

Emittance growth in "Front-end"

Region	Errors	Emittance Increase (nm)		Correction
		average	90% CL	
Escalator + Getaway + RL	X/Y Offsets	0.48	0.52	KM + knobs + CC
	+ Quad Strength	0.68	1.25	KM + knobs + CC
	+ Quad/Sbend Roll	1.87	3.23	KM + knobs + CC
Turnaround + Spin Rotator	X/Y Offsets	2.26	5.33	KM + knobs
(OFF)	+ Quad/Sbend Strength	3.69	8.12	KM + knobs
	+ Quad/Sbend Roll	6.11	12.73	KM + knobs
Turnaround + Spin Rotator	X/Y Offsets	2.14	4.83	KM + knobs
(ON)	+ Quad/Sbend Strength	4.63	9.42	KM + knobs
	+ Quad/Sbend Roll	6.86	13.66	KM + knobs
Entire "Front End"	X/Y Offsets	1.06	1.58	KM + knobs + CC
	+ Quad/Sbend Strength	2.01	3.51	KM + knobs + CC
	+ Quad/Sbend Roll	5.36	9.94	KM + knobs + CC

RF parameters for considered scenario (PHG)

For Main 📥 Linac

Single-stage **Compressor**

Eacc = 26.8MV/m

Scenario		Full Power	Low Power		10Hz - Low P	
RF configuration		KCS & DRFS	KCS	DRFS	KCS	DRFS
I_beam	mA	9	6.2	4.5	6.2	4.5
# bunches/train		2625	132	12	1312	
# trains per second e+	Hz	5	5		5	,
Max energy e+	GeV	250	250		125	
E _{acc} (during beam pulse)	MV/m	31.5	31.5		15.75	
Length of fill pulse	ms	0.595	0.86	1.19	0.86	1.19
Length of beam pulse	ms	0.97	0.70	0.97	0.70	0.97
Fall time (exponential)	ms	0.86	1.24	1.72	1.24	1.72
# train per second e-:	Hz	5	5		5	
Max energy e-	GeV	250	250		150	
E _{acc} (during beam pulse)	MV/m	31.5	31	.5	18.9	
Length of fill pulse	ms	0.595	0.86	1.19	0.517	0.714
Length of beam pulse	ms	0.97	0.70	0.97	0.70	0.97
Fall time (exponential)	ms	0.86	1.24	1.72	0.75	1.03
<pre># trains per second e-:</pre>	Hz				5	
max energy e-	GeV				125	
E _{acc} (during beam pulse)	MV/m				15.75	
Length of fill pulse	ms				0.43	0.595
Length of beam pulse	ms				0.70	0.97
Fall time (exponential)	ms				0.62	0.859

RF Power and cryogenic losses

$$P_{g} = \frac{V_{c}^{2}}{4Q_{L}(r/Q)} \left[\left(1 + \frac{I(r/Q)Q_{L}}{V_{c}} \cos \phi \right)^{2} + \left(\frac{I(r/Q)Q_{L}}{V_{c}} \sin \phi \right)^{2} \right] = \frac{I \cdot V_{c}}{4} \left(\frac{1}{\alpha} + 2\cos \phi + \alpha \right)$$

- Min peak RF power when $P_{\min} = \frac{I \cdot V_c}{2} (1 + \cos \phi)$ $\alpha = \frac{I(r/Q)Q_L}{V_L} = 1$
- $T_{f} = \frac{2Q_{L}}{\omega} \ln \left(\frac{\sqrt{1 + 2\cos\phi + \alpha^{2}}}{\sqrt{1 + 2\cos\phi + \alpha^{2}} 1} \right)$ RF over power: $P_{av} = \frac{I \cdot V_{c} \cdot F_{rep}}{4} \left(\frac{1}{\alpha} + 2\cos\phi + \alpha \right) \left(T_{f} + T_{b} \right) f_{rep.rate}$ • Filling time:

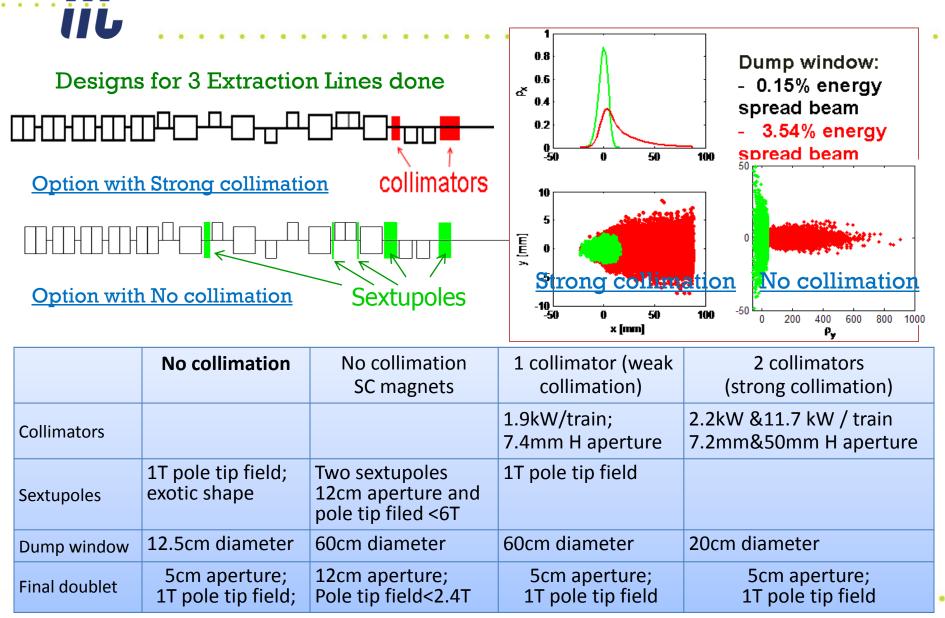
• Optimization to minimize RF over power:

- Single-stage BC: $V_c=26.8 \text{ MV/m}$; $\phi = -127.7^{\circ}$
- Full Power: $9mA; 5Hz; T_b=0.97 ms; => T_f=1.36 ms; P_{pk}=54.5 kW; P_{av}=636W$

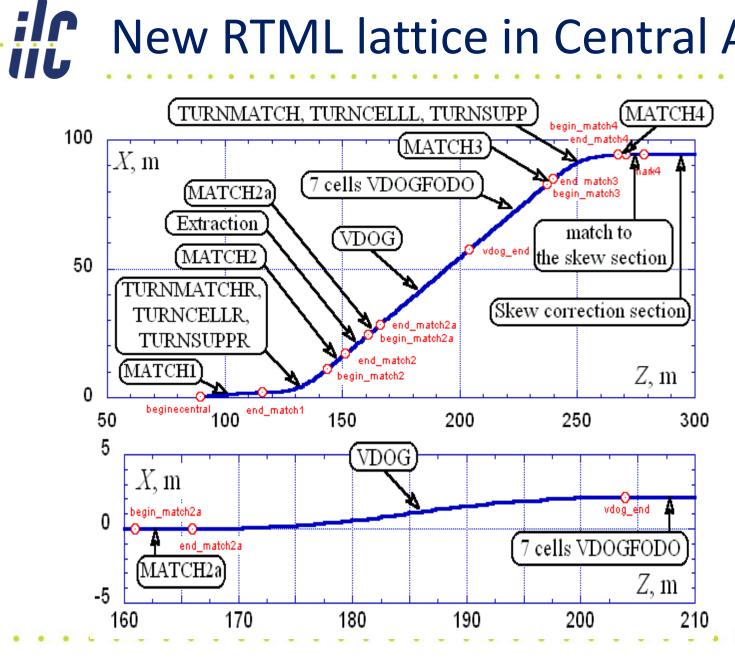
• Low P/KCS; 6.2mA; 5Hz; $T_b=0.7 \text{ ms}$; => $T_f=1.87 \text{ ms}$; $P_{ok}=39 \text{ kW}$; $P_{av}=501 \text{ W}$

- Low P/DRFS; 4.5mA; 5Hz; T_b =0.97 ms; => T_f =2.58 ms; P_{pk} =28 kW; P_{av} =502 W For 10 Hz operation:
- LP/KCS: 6.2mA; 10 Hz => $T_f=1.87 \text{ ms}; P_{ok}=39 \text{ kW}; P_{ov}=1 \text{ kW} (+50\% \text{ vs}. FP)$
- LP/DRFS: 4.5mA; 10 Hz => $T_f=2.58ms$; $P_{pk}=28 kW$; $P_{av}=1 kW$ (+50% vs. FP)

Reference ML: $P_{pk}=280 \ kW; P_{qv} (5Hz)=1.95 \ kW \ per \ cavity$ At 10Hz + 20% higher cryo-losses Need more accurate optimization to minimize cryo-losses


Cryo-losses dominated by RF losses in cavity at 2K

- Full Power; 9mA; 0.97ms; 5Hz
 - $-\alpha$ =2.5, T_f=0.92 ms; P_{pk}=100 kW; P_{av}=0.95 kW (same as in ML at 31.5 MV/m, 5 Hz)
- Low P/KCS; 6.2mA; 0.7ms; 5Hz
 - α =4; T_f =1.19 ms; P_{pk} =126 kW; P_{av} =1.18 kW (-10%)
- Low P/DRFS; 4.5mA; 0.97ms; 5Hz
 - α =4; T_f =1.63 ms; P_{pk} =91 kW; P_{av} =1.2 kW (+10%)
- 10 Hz operation:
 - Cryo-losses will be doubled


Single-stage BC in 10 Hz scenario

- Almost all RT components are working in CW regime
 - Exception: Fast-kickers in two extraction lines (used for emergency beam abort)
- RF system: 6 CM (2 RF units); *E_{acc}=26.8 MV/m*
 - Cryogenic losses are similar (10%) for Full and Low power scenario with 5 Hz (~60kW plug power)
 - Cryogenic losses are 50%-100% higher for 10 Hz vs. 5Hz
 - Klystron should provide 10 Hz operation (XFEL specs)

Redesign of the Extraction Line after BC1S

New RTML lattice in Central Area

Conclusion

- Single-stage Bunch compressor is designed for SB2009.
- Performance of single-stage design is comparable with two-stage BC for compression from 6mm to 0.3 mm.
- Performances of the entire RTML have been evaluated, and resulted satisfactory. Budget for vertical emittance growth in RTML is ~8 nm.
- At 10 Hz operation scenario (low CM energy), the required average RF power and cryogenic losses should be doubled. It is not an issue for 6 cryomodules in BC, powered by 2 separate klystrons (less than for ML)
- Other RTML systems are CW => not sensitive to rep.rate.
- Design (modification) of other RTML beamlines for SB2009 is in good shape.
 - Extraction Line after single-stage BC have been redesigned to accommodate larger energy spread (3.5% vs. 2.5% in RDR)
 - New RTML lattice was designed to accommodate proposed changes in
 - accelerator layout in Central Area (DR, e+/e- sources, BDS)