Cost Impacts of

Reduced \# Bunches per Train

purpose:

not to generate a new ILC estimate, but to facilitate SB2009 decisions

Peter H. Garbincius, Fermilab BAW-2, SLAC, January 19, 2010 latest modification: 19jan2011-1400 PST filename: PHG-BAW_Cost_Impact_LowP.ppt

Outline of this presentation

- Don't call it "Low Power"
- Questions: savings, upgrade/restore, invest
- Cost Differentials ... today vs. tomorrow
- What we can quickly learn from RDR estimate
- RF System Choices for ML for KCS and DRFS
- DR tunnel: $6.4 \mathrm{~km} @ 5 \mathrm{~m}=>3.2 \mathrm{~km} @ 7.5 \mathrm{~m}$ and changes in RF and wiggler quantities
- Electrical Power, Cooling, and Cryo comparisons
- Cost Difference Summaries and Roll-up
- Restoration back to 2625 bunches/train
- Ending notes

Let's not call this "Low Power"

- It is technically reducing the number of bunches from the RDR nominal baseline of 2625 bunches/train to 1312 bunches/train, and by restoring Luminosity by more optimized focusing at I.P. or by using traveling focus.
- We need to maintain 250x250 GeV capability and adequate luminosity
- Cannot start with RF for lower Energy and then upgrade later. This would only make sense if we installed fewer CMs \& added more later

today...

- We start with the BAW-1 decisions: single-tunnel, KCS or DRFS, cavity gradient spread, plus 6.4 km racetrack DR.
- For calculational purposes, we also group the 2*12 RF units ($=3 \mathrm{CM}=26$ cavities) associated with BC-2 with the ML CMs and HLRF, assuming they can be similarly powered. This is just an assumption and does not imply a choice of single-stage Bunch Compressor.
- Question: How much can we save if we reduce number of bunches/train 2625 => 1312?
- What is the upgrade path back to 2625 bunches?
- What would it cost to restore 2625 bunch capability?
- What should we invest in utilities: civil, electrical, cooling, cryo, etc. from to facilitate restoration?
cost differentials
- We will not generate complete estimates, just see how much the configuration changes under consideration could save relative to the 6.618 B ILCU RDR estimate.
- Today, we will not consider "10 Hz" which is really 150 GeV e-for positron production \& 125x125 GeV e+e- collisions at IP where both pulses are interspersed at 5 Hz each nor impact of moving e+ source to end of ML
..... tomorrow!

preamble

- Thank you to many people who have worked hard to produce these quantitative impacts:

DR: Susanna, RF: ChrisN, ChrisA, Shigeki
Cryo: TommyP,
CFS: Vic, Tomski, Emil, Randy, Lee ...

- Again, information, specifications, requirements came late
- CFS and I struggled to get these data on paper, we knew what we had to do, but insufficient opportunity for cross checking

I'll point out errors, omissions, inconsistencies

Cost Impact Matrix

Reduce \# bunches 2625 => 1312 @ 250×250 GeV

reduced \# bunches	Tech. Comps.	RF Power	Cryo Power	Civil Tunnels	Civil Cavern*	Civil Buildings	Electrial Power	Thermal Cooling	Notes * includes alcoves \& tunnel widenings
\mathbf{e} - source	\mathbf{V}	\mathbf{V}	\mathbf{V}				\mathbf{V}	\mathbf{V}	reduced laser and cryo RF
$\mathbf{e + s o u r c e ~}$	\mathbf{V}	\mathbf{V}	\mathbf{V}				\mathbf{V}	\mathbf{V}	cryo RF and cooling of photon dump
DR	\mathbf{V}	reduced circumference to 3.2 km							
RTML	\mathbf{V}	\mathbf{V}	\mathbf{V}				\mathbf{V}	\mathbf{V}	only BC1 (BC-2 included under ML)
ML (\& BC-2)	\mathbf{V}	\mathbf{V}	\mathbf{V}			$\mathbf{K C S}$	\mathbf{V}	\mathbf{V}	\# HLRF components (LLRF impact)
BDS	\mathbf{V}	slight	slight				slight	slight	traveling focus components only
Exp Hall									no impact yet
Common							\mathbf{V}		only Master Substation

Major costs are for Main Linacs \& Damping Rings,

 so we will concentrate only on these systems. e- \& e+ Sources, and RTML have reduced power BDS traveling focus systems ~ small extra costs CFS did include impact on Master Substationother savings not considered:

- Water Cooling for Main Dumps (2), Tune-Up Dumps in BDS (2), \& Photon Dump (e+ Src): the mechanical systems and capacities are sized for $500 \times 500 \mathrm{GeV}$ operations, so could reduce number of pumps and HEXs for reduced bunch number, and add later
- Cryogenics Plant cost estimates include multiple compressors, some of which might be able to be deferred for low bunch number configuration and added later to restore full Power

RF pulse for constant klystron power

$$
\begin{aligned}
& \tau=1 /\left(2 \pi f_{o}\right)^{*} 2^{*}\left(\mathrm{~V} _\mathrm{c} / / _\mathrm{b}\right) /(\mathrm{R} / \mathrm{Qo}) \\
& \text { where } \mathrm{f}_{\mathrm{o}}=1.3 \mathrm{GHz}, \mathrm{R} / \mathrm{Qo}=1036 \Omega
\end{aligned}
$$

$$
2 \mathrm{~V}_{\mathrm{o}}\left(1-\mathrm{e}^{\left.-\mathrm{e}^{-\tau}\right)}\right) .
$$

$$
\text { asymptote }=2 \mathrm{~V}_{\mathrm{o}}
$$

V_cavity(t)

optimizations

- Both accelerates 1312 bunches per train
- ChrisA - KCS reduces beam current from 9 mA => 6.2 mA , reducing t_beam and keeping t_rf constant which minimizes power, cooling, and dynamic load on cryogenics but only reduces \# klystrons from 714/699 to 499/477 or 70\%/68\% (installed/powered)
- Shigeki - DRFS drops every other bunch keeping t_beam constant, which reduces \# klystrons by 50%, but increases t _fill and τ which increases power, cooling, and dynamic load on cryogenics
- Which is more optimal approach?

KCS configurations

B. LOW POWER
(our interpretation)

in
 IIL

KCS power flow 27 Unit KCS Average Power Diagram Corrected

$3.852 \xrightarrow{\text { klystron collector (.65) }} \longrightarrow 1.348 \mathrm{MW}$

DRFS for Reduced \# Bunches

- Shigeki sent multiple choices on Sunday, Jan 16: designated 091216, 100327, 100601, 110115A
- I'll use 110115A which includes extra cost for extra capacity needed for longer t_rf for DC PS and Modulators, but not for Klystron
- Shigeki did apply "learning curves" of 89-90\% or quantity pricing reduction for klystrons, modulators, \& power supplies
- Shigeki previously said details with new estimates will not be available until Summer 2011

i/f

Dependence of Cryo Dynamic Loads

RF load $\sim V^{2}$ cav $^{*}\left(\mathrm{t}_{\text {beam }}+1.11^{*} \mathrm{t}_{\text {fill }}\right)$
Input Coupler load $\sim \mathrm{V}_{\text {cav }}{ }^{*}\left(\mathrm{t}_{\text {beam }}+\mathrm{t}_{\text {fill }}\right){ }^{*} I_{\text {beam }}$
HOM (beam) load $\sim I_{\text {beam }}$
Don't ask, I don't have simple breakdown by dynamic load component, or even dynamic to static sum, only listed as function of coolant temperature ($2 \mathrm{~K}, 5 \mathrm{~K}, 40 \mathrm{~K}$)

Cryo Loads: Full Power (both) 10* 4.42 MW Reduced \# bunches: KCS 10* 4.12 MW DRFS 10* 4.72 MW
7.5 m diameter DR tunnel for 3 rings

- Prior SB2009 had 6.5 m dia DR tunnel
- US $6.5 \mathrm{~m} 11.067 \mathrm{~K} / \mathrm{m}$, Asia $6.5 \mathrm{~m} 10.458 \mathrm{~K} / \mathrm{m}$
- US $7.5 \mathrm{~m} 12.166 \mathrm{~K} / \mathrm{m}$, Asia $7.5 \mathrm{~m} 11.952 \mathrm{~K} / \mathrm{m}$
- Difference between 7.5 m and 6.5 m diameter tunnel for for 3,223 meter DR:

US 3.6 M ILCU, Asia 4.8 M ILCU

- Both US and Asia estimates include excavation \& concrete finishes
- This above analysis of US estimate did NOT include extra costs for tighter turning TBM for 3.2 km DR, although detailed CFS estimate did

TВМ Tunnel Cost vs. Diameter - PHG - 10ian2011

TBM tunnel + finishing cost Japan fit normalized at dia $=5 \mathrm{~m}$ to RDR value

(This does not include land developing cost.)
Atsushi @ BAW-1

iln IIL How can 3 rings fit in the DR tunnel?

CEBAF 4-ring circus

Reduced \# Bunches Impacts
PHG - BAW-2 SLAC - 19jan2011
ILC - Global Design Effort

iln
 IL Damping Ring Magnets

 RF cavities \& wigglers on next page

 RF cavities \& wigglers on next page}

Positron-Source-Location-PHG-19nov2010.xIs/DR-counts
Peter H. Garbincius - re-do damping ring counts
1.0323

7dec2010-3:30 PM
https://wiki.lepp.cornell.edu/ilc/bin/view/Public/DampingRings/\#Damping Rings Parameters and Lat

RF \& wigglers for DRs - 5 Hz

full P - 3 rings

lattice	RDR-OCS 6	DCO 4	SB2009	SB2009	SB2009
	20-Apr-07	full-P 5 Hz	LowP 5 Hz	full-P 5 Hz	full-P 5 Hz
beams	e+/e-	e+/e-	e+/e-	e-	2* $\mathrm{e}+$
reference-page	ref 3 p 31	ref 4 p 3	4-11,30	ref 4 p 30	ref 4 p 30
Circumference (m)	6695	6476	3238	3238	3238
\# bunches per DR	2610	2610	1305	2610	1305
damping time ms	26	21	24	24	24
RF Voltage MV/DR	24	21	7.5	7.5	3.75
\# RF cavities/DR	18	16	6	12	6
\# klystrons/DR	5	4	2	4	2
Wiggler B (Tesla)	1.67	1.6	1.6	1.6	1.6
Wiggler period (m)	0.4	0.4	0.4	0.4	0.4
Wiggler lgt ea (m)	2.45	2.45	2.45	2.45	2.45
Wiggler Igt/DR (m)	200	216	78	78	78
\# wigglers/DR	80	88	32	32	32
Reduced\# Bunches Impacts PHG - BAW-2 SLAC - 19jan2011 ILC - Global Design Effort					

Cost Differentials for ML

Main Linac -KCS	Full Power 2625		Reduced \# 1312		cost diff-M	Notes: basis = ChrisA's cartoon 27unitKCSpowerflow.pptx
	Quantity	Cost - M	Quantity	Cost - M		
Klystrons - 10 MW	714	206.3	499	153.7	-52.6	cost includes Learning Curve
Modulators \& PS	714	377.7	499	282.4	-95.3	assumes same performance
KCS Pipe - meters	1428	1.4	998	1.0	-0.4	differential in RF Building
CTO Couplers - pairs	714	7.1	499	5	-2.1	klystrons to pipe in building
W.G. Switches - pairs	714		499			safety - have no unit cost
Cryogenics Plants - MW	10*4.42	228.1	10*4.12	218.8	-9.3	same cryo accessories \& distrib
CFS: Civil		609.5		593	-16.5	
CFS: Electrical - MW	151.6	142.5	119.7	125.5	-17.0	red = changed since draft
CFS: Air + Cooling - MW	79.8	117.3	63.6	107.49	-9.8	
totals	1689.9			1486.9	-203.0	
Main Linac - DRFS modified 18jan2011	Full Power 2625		Reduced \# 1312		cost diff - M	Notes: based on DRF-Cost 110115A
	Quantity	Cost - M	Quantity	Cost - M		
Klystrons - 800 KW	7592	493.5	3796	247.0	-246.5	includes extra capaity for Low P
Magic Tees - Hybrids	7592	52.0	11690	80.0	28.0	for DC PS and Modulators
DC PS (incl backup)	584	174.0	584	65.1	-108.9	did not include "learning curves"
MA Pulser (incl backup)	876	52.6	437	35.0	-17.6	
Cryogenics Plants - MW	10*4.42	228.1	10*4.72	237.2	9.1	same cryo accessories \& distrib
CFS: Civil		632.9		632.9	0.0	
CFS: Electrical - MW	182.3	186.7	167.8	171.8	-14.9	
CFS: Air + Cooling - MW	92.8	171.1	61.3	159.1	-12.0	
totals		1990.9		1628.1	-362.8	

DR \& Summary Cost Differentials

Damping Rings					cost diff - M	restore 2625 bunches $1 \mathrm{e}-\mathrm{\&} 2 \mathrm{e}+\mathrm{DRs}$		Notes:
	Full Power 2625		Reduced \# 1312					
	Quantity	Cost - M	Quantity	Cost - M		Quantity	Cost - M	
Technical Elements		425.8		276.3	-149.5		426.1	see DR detail sheet(s)
Cryogenic Plants - MW	2.16	19.9	0.77	9.6	-10.3	need info	need info	two cryo plants
Cryogenic Distribution		8.5		8.3	-0.2		12.8	50\% more for 3 rings
CFS: Civil	6.4 @ 5	127.8	3.2 @ 7.5	107.3	-20.5		107.3	note 7.5 m tunnel to allow 3 rings
CFS: Electrical - MW	26.3	20.1	12.8	16.3	-3.8	19.2	18.1	
CFS: Air + Cooling - MW	19.5	32.0	8.5	24.2	-7.8	14.8	30.3	
totals		634.1		442.0	-192.1		594.5	

Summary (in M ILCU)	ML	DR	Total	wrt 6,618 M ILCU
Savings with KCS	-203	-192	-395	-6.0%
Savings with DRFS	-363	-192	-555	-8.4%

- KCS - relatively easy, increase size of RF building, install klystrons \& modulators, on surface. Minimum impact on accelerator operations. Should install full Cryo plants from start (don't save that 9 M ILCU earlier)
- DRFS - need to add many more klystrons in tunnel, interrupting accelerator operations. Due to higher cryo load for DRFS reduced \# bunches, larger plants were installed and will not need upgrading.
- Damping Ring - install a second Positron Ring, inj/extr e+ switches, and more cryo and power.

restoring 2625 bunches/train

Main Linac -KCS	$\begin{array}{\|c\|} \hline \text { Full Power } \\ 2625 \\ \hline \end{array}$	to restore 2625		$\begin{gathered} \text { terminate } \\ \text { at } 1312 \end{gathered}$	Notes red = PHG guess
		initially	defer		
	Cost - M	Cost - M	Cost - M	Cost - M	
Klystrons - 10 MW	206	154	53	154	
Modulators \& PS	378	282	95	282	
KCS Pipe - meters	1	1	0	1	
CTO Couplers - pairs	7	5	2	5	
W.G. Switches - pairs					
Cryogenics Plants - MW	228	228	0	219	could defer some compressors
CFS: Civil	610	593	17	593	defer buildings
CFS: Electrical - MW	143	134	9	126	assume some fraction ~ 50\%
CFS: Air + Cooling - MW	117	112	5	107	assume some fraction ~ 50\%
totals	1690	1510	180	1487	
Damping Rings - 3.2 km$1 \mathrm{e}+\& 1 \mathrm{e}-=>2 \mathrm{e}+\& 1 \mathrm{e}-$	Full Power 2625	to restore 2625		$\begin{aligned} & \text { terminate } \\ & \text { at } 1312 \end{aligned}$	Notes red = PHG guess
		initially	defer		
	Cost - M	Cost - M	Cost - M	Cost - M	
Technical Elements	426	276	150	276	maybe some extra/reconfigure
Cryogenic Plants - MW	20	20		10	could defer some compressors
Cryogenic Distribution	9	8	0	8	minor \# new boxes
CFS: Civil	128	107	21	107	already paid for 7.5 m tunnel
CFS: Electrical - MW	20	18	2	16	assume some fraction ~ 50\%
CFS: Air + Cooling - MW	32	28	4	24	assume some fraction ~ 50\%
totals	634	458	176	442	
sums ML (KCS) + DR	2324	1968	356	1929	
difference $=$ extra investi	ment cost $=$	1968	minus	1929	$39 \mathrm{M} \mathrm{ILCU}(=0.6 \%$ of 6.6 B ILCU$)$

check KSC optimization!

Is ChrisA's optimization of KCS for reduced \# bunches optimal? He tried to minimize dynamic load on cryogenics system What if he took DRFS approach => cut \# klystrons in half which forces longer t_rf pulse length?

Full Power
714 klys 206 M
714 mod 378 M
Cryo $4.42 \underline{228 \mathrm{M}}$
Total

KCS approach
499 klys 194 M
$499 \bmod 282 \mathrm{M}$
cryo $4.12 \frac{219 \mathrm{M}}{695 \mathrm{M}}$

DRFS approach
357 klys 116 M 357 mod* 251 M
cryo $4.72 \quad \underline{237}$ M 604 M

This used LC = 90\% for klystrons, 88.5\% for mods

* I did multiply by modulator cost by sqrt(2.159/1.564) $=1.175$ Have not looked at cost for increased pulse length for klystron Have not looked at Electrical \& Cooling ~ $27 . \mathrm{M}$ less for DRRF.

Backup notes

- CFS: no CMU fire-rated enclosure for DRs, however, this would be no differential cost Not needed for DR due to new understanding of fire protection reqs for single tunnels
- CFS did not vary the power requirements for Cryogenics Plants for DR (used RDR for all)
- CFS did not change capacity of DR service buildings for electrical and cooling, but did vary for cryogenics
- CHECK THIS OUT!
curious plot!

ill
 It ILC-GDE Cost Disclosure Rules
 http://www-ilcdcb.fnal.gov/cost-confidentiality-official-njw.pdf

This meeting will involve discussion of actual cost estimating numbers and data
"review" access has been granted by the GDE Executive Committee to cost data

- questions are allowed, but - no hard copy or e-file
you must agree (or have previously agreed) not to discuss outside of context of this meeting, publish, or post on public web-site any cost estimating information

