Cost Impacts of Reduced # Bunches per Train

purpose: not to generate a new ILC estimate, but to facilitate SB2009 decisions

Peter H. Garbincius, Fermilab BAW-2, SLAC, January 19, 2010 *latest modification: 19jan2011-1400 PST filename: PHG-BAW_Cost_Impact_LowP.ppt*

Outline of this presentation

- Don't call it "Low Power"
- Questions: savings, upgrade/restore, invest
- Cost Differentials ... today vs. tomorrow
- What we can quickly learn from RDR estimate
- RF System Choices for ML for KCS and DRFS
- DR tunnel: 6.4 km @ 5 m => 3.2 km @ 7.5 m and changes in RF and wiggler quantities
- Electrical Power, Cooling, and Cryo comparisons
- Cost Difference Summaries and Roll-up
- Restoration back to 2625 bunches/train
- Ending notes

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

Let's not call this "Low Power"

- It is technically reducing the number of bunches from the RDR nominal baseline of 2625 bunches/train to 1312 bunches/train, and by restoring Luminosity by more optimized focusing at I.P. or by using traveling focus.
- We need to maintain **250x250 GeV** capability and adequate luminosity
- Cannot start with RF for lower Energy and then upgrade later. This would only make sense if we installed fewer CMs & added more later

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ir iit

 We start with the BAW-1 decisions: single-tunnel, KCS or DRFS, cavity gradient spread, plus 6.4 km racetrack DR.

today...

- For calculational purposes, we also group the 2*12 RF units (= 3 CM = 26 cavities) associated with BC-2 with the ML CMs and HLRF, assuming they can be similarly powered. This is just an assumption and does not imply a choice of single-stage Bunch Compressor.
- Question: How much can we save if we reduce number of bunches/train 2625 => 1312?
- What is the *upgrade path* back to 2625 bunches?
 - What would it cost to restore 2625 bunch capability?
 - What should we *invest* in utilities: civil, electrical, cooling, cryo, etc. from to *facilitate* restoration?

- We will not generate complete estimates, just see how much the configuration changes under consideration could save relative to the 6.618 B ILCU RDR estimate.
- Today, we will not consider "10 Hz" which is really 150 GeV e- for positron production & 125x125 GeV e+e- collisions at IP where both pulses are interspersed at 5 Hz each nor impact of moving e+ source to end of ML tomorrow!

- Thank you to many people who have worked hard to produce these *quantitative* impacts: DR: Susanna, RF: ChrisN, ChrisA, Shigeki Cryo: TommyP, CFS: Vic, Tomski, Emil, Randy, Lee ...
- Again, information, specifications, requirements came late
- CFS and I struggled to get these data on paper, we knew what we had to do, but *insufficient opportunity for cross checking* I'll point out errors, omissions, inconsistencies

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

Cost Impact Matrix

Reduce # bunches 2625 => 1312 @ 250x250 GeV

reduced	Tech.	RF	Cryo	Civil	Civil	Civil	Electrial	Thermal	Notes
# bunches	Comps.	Power	Power	Tunnels	Cavern*	Buildings	Power	Cooling	* includes alcoves & tunnel widenings
e- source	V	v	V				V	V	reduced laser and cryo RF
e+ source	V	v	V				V	V	cryo RF and cooling of photon dump
DR	V	v	V	V	V	V	V	V	reduced circumference to 3.2 km
RTML	V	v	V				V	V	only BC1 (BC-2 included under ML)
ML (& BC-2)	7	V	7			KCS	V	V	# HLRF components (LLRF impact)
BDS	7	slight	slight				slight	slight	traveling focus components only
Exp Hall									no impact yet
Common							V		only Master Substation

Major costs are for *Main Linacs* & *Damping Rings*, so we will concentrate only on these systems. e- & e+ Sources, and RTML have reduced power BDS traveling focus systems ~ small extra costs CFS did include impact on Master Substation

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

other savings not considered:

- Water Cooling for Main Dumps (2), Tune-Up Dumps in BDS (2), & Photon Dump (e+ Src): the mechanical systems and capacities are sized for 500x500 GeV operations, so could reduce number of pumps and HEXs for reduced bunch number, and add later
- Cryogenics Plant cost estimates include multiple compressors, some of which might be able to be deferred for low bunch number configuration and added later to restore full Power

RF pulse for constant klystron power

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

optimizations

- Both accelerates 1312 bunches per train
- ChrisA KCS reduces beam current from 9 mA => 6.2 mA, reducing t_beam and keeping t_rf constant which minimizes power, cooling, and dynamic load on cryogenics but only reduces # klystrons from 714/699 to 499/477 or 70%/68% (installed/powered)
- Shigeki DRFS drops every other bunch keeping t_beam constant, which reduces # klystrons by 50%, but increases t_fill and τ which increases power, cooling, and dynamic load on cryogenics
- Which is more optimal approach?

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

KCS configurations

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ΪĻ

KCS power flow

10 27 Unit KCS Average Power Diagram Corrected

ILC - Global Design Effort

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

12

DRFS for Reduced # Bunches

- Shigeki sent multiple choices on Sunday, Jan 16: designated 091216, 100327, 100601, 110115A
- I'll use 110115A which includes extra cost for extra capacity needed for longer t_rf for DC PS and Modulators, but not for Klystron
- Shigeki did apply "learning curves" of 89-90% or quantity pricing reduction for klystrons, modulators, & power supplies
- Shigeki previously said details with new estimates
 will not be available until Summer 2011

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ic Dependence of Cryo Dynamic Loads

RF load ~ V_{cav}^{2} *(t_{beam} +1.11* t_{fill}) Input Coupler load ~ V_{cav}^{*} (t_{beam} + t_{fill})* I_{beam} HOM (beam) load ~ I_{beam}

Don't ask, I don't have simple breakdown by dynamic load component, or even dynamic to static sum, only listed as function of coolant temperature (2 K, 5 K, 40 K)

Cryo Loads: Full Power (both) 10* 4.42 MW Reduced # bunches: KCS 10* 4.12 MW DRFS 10* 4.72 MW

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ic 7.5 m diameter DR tunnel for 3 rings

- Prior SB2009 had 6.5 m dia DR tunnel
- US 6.5 m 11.067 K/m, Asia 6.5 m 10.458 K/m
- US 7.5 m 12.166 K/m, Asia 7.5 m 11.952 K/m
- Difference between 7.5 m and 6.5 m diameter tunnel for for 3,223 meter DR: US 3.6 M ILCU, Asia 4.8 M ILCU
- Both US and Asia estimates include excavation & concrete finishes
- This above analysis of US estimate did NOT include extra costs for tighter turning TBM for 3.2 km DR, although detailed CFS estimate did

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

TBM Tunnel Cost vs. Diameter

Hanson/Tracy Lundin: Chicago TARP – Deep Tunnel MACHINE MINED ROCK TUNNEL AS BID CONSTRUCTION COSTS 4.5 3/03 COST PER FOOT OF LENGTH 4.0 3.5 3.0 CHICAGO (SUNSANDS) MILWAUKEE 2.5 Linear (CHICAGO) 2.0 Linear (MILWAUKEE) 1.5 1 = 0.0336x + 0.94351.0 0.5 = 0.0531x + 1.16580.0 40.0 20.0 30.0 0.0 10.0 EXCAVATED DIAMETER IN FEET

(This does not include land developing cost.)

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ILC - Global Design Effort

BAW-1

ic How can 3 rings fit in the DR tunnel?

CEBAF 4-ring circus

3 CM IN ONE TUNNEL 6 METER TUNNEL SHOWN WITH NOTCHED FLOOR (VERY DIFFICULT SOLUTION) THE OUTER CIRCLE IS 6.5 METERS

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

Damping Ring Magnets

RF cavities & wigglers on next page

Peter H. Garbincius - re-do damping ring counts 7dec2010-3:30 PM https://wiki.lepp.cornell.edu/lic/bin/view/Public/DampingRings/#Damping. Rings Parameters and Lat max k1 = 0.585 all quads are 0.3 m per ring - 5 GeV OCS6 - RDR DR & Magnets - 6.7 het per ea per tot DCO4 - Susanna 10/09 - 6.4 race per ea per tot SE2009 - 14dec09 - 3.2 race per ea per tot Main e- DR & e+ DR each # length m max k1 unit field K 2006 # ligt field 2006 2006 # ligt field 2006 200 2006 # ligt field 2006 200 2006 # ligt field 2006 200	Positron-Source-Location-PHG-1	19nov	2010 vis/D/	P-counts		1.0323				dinole	Klsar				3 hov	u do the	cost of s	extunole	s scale	with Sy	term? F
https://wiki.lepp.comell.edu/ilc/bin/view/Public/Damping.HDB Parameters and Lat max k1 = 0.585 all quads are 0.3 m perring - S GeV OCS5 - RD RR & Magnets - 6.7 hex pere a jertor DCO4 - susanna 1/0/9 - 6.4 race pere a jertor DS200 - 140e:00 - 3.2 race pere a jertor DCO4 - susanna 1/0/9 - 6.4 race pere a jertor DECO4 - susanna 1/0/9 - 10/9 race pere a jertor DECO4 - susanna 1/0/9 - 10/9 race pere a jertor DECO4 - susanna								+'		uipore	KLS die	UK	('	<u> </u>	5. 110 w	uo trie i		excupore	s Scale v		
from RDR table k1 arcs = 0.287 k max- max k1 = 0.585 all quads are 0.3 m Imax k1 = 0.585 all quads are 0.3 m per ring - 5 GeV OCS6 - RDR DR & Magnets - 6.7 hex per ea per to DCO4 - Susana 10/09 - 6.4 racd per ea per to SE009 - 14dec09 - 3.2 race per ea per to RDR Dipoles 6 m 114 6 0.0524 1 0.145 T 63.66 7.257 Imax k1 = 0.285 2006 # lgt field 2006 # field 2006 # field 2006			-					Parame	tors an	d Lat	('		('	<u> </u>	(]	()	<u> </u>			+'	<u> </u>
per ring - 5 GeV OCS6 - RDR DR & Magnets - 6.7 hex per ea	Intps.// wiki.iepp.comen.com	<u>/ Uni / v</u>									יבע k1 =	0 585	all aus	ds are l	0.3 m	()	<u> </u>			<u> </u>	<u> </u>
Main e- DR & e+ DR each # length m max KL unit field K 2006 # lgt field 2006 # lgt field 2006 200 # lgt field 2006 200 # lgt field 2006 200 200 200 200 200 200 # lgt field 2006 200 <	per ring - 5 GeV	OCSE					_						<u> </u>	-		SB2000	- 1/dec(10 - 3 2 ra	<u></u>	nerez	pertot
RDR Dipoles 6 m 114 6 0.0524 1 0.145 T 63.66 7,257 0		<u> </u>				-				-	1	<u> </u>	-		- · ·		1		1		-
RDR Dipoles 3 m 12 3 0.0262 1 0.145 T 38.82 466 v		112								-	154			2000	2000	<u> </u>	151			2000	2000
DC04 arc dipoles above is above is abour right 200 2 0.27 T 39.51 7.902 v	I						<u>(</u> т					\square								\square	
DSB3 arc dipoles - type 1 bend angle at L m per chicane dipoles - 1 m - 0.27 no chicanes? 6 m dipole 6 m dipole 5 m dipole 5 m dipole 5 m dipole							ight.	30.02			· 2	0.27		39 51	7 902	$ \longrightarrow $				\square	
DSB3 arc dipoles - type 2 at 1 m per at 1 m per <t< td=""><td></td><td>\square</td><td></td><td></td><td></td><td></td><td>gin</td><td>\square</td><td></td><td>200</td><td></td><td>0.27</td><td><u> </u></td><td>39.91</td><td>1,502</td><td></td><td>27</td><td>0.26</td><td></td><td>51 3F</td><td>5 3,493</td></t<>		\square					gin	\square		200		0.27	<u> </u>	39.91	1,502		27	0.26		51 3F	5 3,493
chicane dipoles - 1 m - 0.27 no chicanes? 6 m dipole Susana: chicanes omitted but needed 48 1 0.27 T 19.76 948 48 1 0.27 T 19.76 148 1 14.31 14.31 12.24 6,747 1 16.81 17 16.81 17		\square	('			\rightarrow		\square							\square						
Quads V1 551 0.3 0.31 1/m 6.1 T/m 12.24 6,747 Image: Control of the state		nor	hicanes?			a: chicz	nes omi	tted bu	t needer	48		0.27		19.76	948					_	-
Quads V2-V3-V4 196 0.3 0.31 1/m 17.3 T/m 16.84 3,301 Image Image Goad Image Image Goad Image Image Image Goad Image Image<		-			-	1 1		1 1	-			0.27	<u> </u>	15.75				0.27		13.70	540
Quadrupoles - 0.3 m - 12 T/m Q is bend at 1 m right range 692 0.3 12 T/m 16.84 11,654 Image						-	· ·		-7							$ \longrightarrow $				\square	
Quadrupoles # 1 Q30L300 V2 but RDR was Q60 L30 but pole tip radius was 0.03 m all = 0.3 m interpolate below 204 0.3 11 T/m 14.31 2.9 Quadrupoles # 2 K1 V1 = 0.287 2.8361 are these quads all the same? 128 0.56 8.3 T/m 26.95 3.4 Quadrupoles # 3 K1 V2-4 0.725 0.3 m 2.5261 use same cost as RDR V2 128 0.73 11.9 T/m 32.84 4.2 Quadrupoles # 4 0.399 0.15 m Gmax= 12.434 close1 4 0.215 16.9 T/m 30.43 14.7 T/m 20.71 6 Quadrupoles # 5 692 494 interpolate below 2.8361 .4.70 10.44 .2.5 150 T/m 2.9.71 6 692 494 interpolate below 2.8.8 2.8.8 2.4.90 2.80 0.25 150 T/m 2.9.71 6.5 2.7.7 1.1.22 4.400 2.80 0.25 1.50 T/m 2.9.71 6 2.8.8 2.9.0 2					· ·	_	.,		5,55-	_	0.3	12	T/m	16,84	11.654	$ \longrightarrow $				\square	
Quadrupoles # 2 K1 V1= 0.287 2.8361 are these quads all the same? 128 0.56 8.3 T/n 26.95 3.4 Quadrupoles # 3 K1 V2-4 0.725 0.3 m 2.5261 use same cost as RDR V2 128 0.73 11.9 T/m 32.84 4.2 Quadrupoles # 4 0.939 0.15 m 0.939 0.15 m 0.6 Gmax= 12.434 close! 4 0.215 16.9 T/m 10.44 Quadrupoles # 5 0.05 0.24 1/m^2 16.76 T/m 2.303 392 0.25 215 T/m 20.05 16.9 T/m 20.71 692 sextupoles 480 0.25 0.24 1/m² 16.76 T/m² 4.79 2.303 392 0.25 0.133 T 4.756 1.427 300 0.25 0.103 T 4.756 1.427 300 0.25 0.133 T 4.756 1.427 300 0.25 0.133 T 4.756 1.427 300 0.25 0.23 1.013 T 4.756		but /					0						<u> </u>				0.3	11	T/m	14.31	2,920
Quadrupoles # 3 Image: Mitropic for the mitro										-			<u> </u>								
Quadrupoles #4 Image: Mark and Mark an	· · · ·							-			-	•			$ \longrightarrow $				-		-
Quadrupoles # 5	· ·	\square										1		-				_			42
sextupoles 480 0.25 0.24 1/m^2 16.76 T/m^2 4.799 2,303 392 0.25 215 T/m^2 11.22 4,400 280 0.25 150 T/m^2 9.956 2,77 orbit corrector magnets 300 0.25 0.002 1 0.133 T 4.756 1,427 300 0.25 0.133																30					
sextupoles 480 0.25 0.24 1/m^2 16.76 T/m^2 4.799 2,303 392 0.25 215 T/m^2 1.22 4,400 280 0.25 150 T/m² 9.956 2,70 orbit corrector magnets 300 0.25 0.002 1 0.133 T 4.756 1,427 300 0.25 0.133 T 4.756 1,4 4.756 1,427 300 0.25 0.133 T 4.756 1,4 4.756 1,4 4.756 1,4 4.756 1,427 300 0.25 0.133 T 4.756 1,4 4.756 1,4 4.756 1,4 4.756 1,4 4.756 1,4 4.756 1,4 4.756 1,4 4.756	sum # main Quadrupoles =	747								692						494		inte	erpolate	a below	
orbit corrector magnets 300 0.25 0.002 1 0.133 T 4.756 1,427 300 0.25 0.23 2.2 T/m 12.1 2,903 240 0.25 2.2 T/m 12.1 2,903 20.15		480	0.25	0.24	1/m^2	. 16.76	T/m^2	4.799	2,303		-	, 215	T/m^2	<u>11.22</u>	. <mark>4,400</mark>	280	0.25	150	T/m^2	2 <mark>9.956</mark>	5 <mark>2,788</mark>
skew quads 240 0.25 0.03 1/m 2.0 T/m 12.1 2.903 240 0.25 2.2 T/m 12.1 2.903 240 0.25 2.0 T/m 12.1 2.903 240 0.25 2.2 T/m 12.1 2.903 240 0.25 2.2 T/m 12.1 2.903 240 0.25 2.2 T/m 12.1 2.903 240 12.1 2.903 24	orbit corrector magnets	300	0.25	0.002	. 1'	. 0.133	<u>і т</u> '	4.756	1,427	300	0.25	0.133	(т'	4.756	1,427	300	0.25	0.133	<u>т</u>	4.756	5 1,427
Common Injection/Extraction/AbortImage: Common Injection/AbortImage: C		240	0.25	0.03	1/m	2.0	T/m	12.1	2,903	, 240	0.25	2.2	T/m	12.1			0.25	2.2	T/m	12.1	L 2,903
Common Injection/Extraction/AbortImage: Common Injection/AbortImage: C	check arc dipoles int B*dL (T-m)	104	expect	104.4	T-m	sum07	25,192	sum06	24,404	4 108	(T-m - 7	sum07	30,179	sum0€	29,234	106	close	sum07	27,93€	sum06	27,062
Quads V2 (inj/extr) 12 Image: Constraint of the system of the syste	Common Injection/Extraction/A'	bort					\square		\square				\square		\Box	\square					
Quads V2 (inj/extr) 12 Image: Constraint of the system of the syste	RTML6 dipoles (inj/extr/abort	3	D60L2000	/	·	1	ı'	· · · · ·	1	same	('	,	·'			same		, 	1	· · · · ·	
inj/extr kickers 40 Image: Constraint of the system Same Image: Constraint of the system Image: Consthe system Image: Constrait of the syste		12	<u>(</u> '		· · · · · ·	1	1	['	í'	same	<u> </u>	[]	í'			same		, I	1	· · · · · · · · · · · · · · · · · · ·	
abort kickers 1 I I I I I I I I I I I I I I I I I I	inj/extr kickers	40	<u>ر ا</u> ر	· '	ſ <u></u>	<u>ا</u>	í'	ſ <u></u>	I'	same	<u> </u>	I	·'		<u> </u>	same		·!	1	·'	
	inj/extr septa	4	, <u> </u>		<u> </u>	1	í'	ſ <u></u> '	I'	same	<u>/ </u>	I!	<u>ا</u> '	<u> </u>	<u> </u>	same		, <u> </u>	I '	· []	
abort septa 1 same same	abort kickers	1	·ا	ſ <u> </u>	<u> </u>	<u>ا</u> ا	·′	ſ <u></u> '	<u>ا </u>	same	<u>(</u>	<u>ا</u> ا	ſ <u></u> '	<u> </u>	<u> </u>	same		·!	I '	· ['	
	abort septa	1	·ا		<u> </u>		' <u> </u>	<u> </u>	· '	same	<u> </u>	<u> </u>	<u> </u>		<u> </u>	same		!		'	

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

IIL

RF & wigglers for DRs – 5 Hz

full P – 3 rings

lattice	RDR-OCS 6	DCO 4	SB2009	SB2009	SB2009
	20-Apr-07	full-P 5 Hz	LowP 5 Hz	full-P 5 Hz	full-P 5 Hz
beams	e+/e-	e+/e-	e+/e-	e-	2* e+
reference-page	ref 3 p 31	ref4p3	4-11,30	ref 4 p 30	ref 4 p 30
Circumference (m)	6695	6476	3238	3238	3238
# bunches per DR	2610	2610	1305	2610	1305
damping time ms	26	21	24	24	24
RF Voltage MV/DR	24	21	7.5	7.5	3.75
# RF cavities/DR	18	16	6	12	6
# klystrons/DR	5	4	2	4	2
Wiggler B (Tesla)	1.67	1.6	1.6	1.6	1.6
Wiggler period (m)	0.4	0.4	0.4	0.4	0.4
Wiggler lgt ea (m)	2.45	2.45	2.45	2.45	2.45
Wiggler lgt/DR (m)	200	216	78	78	78
# wigglers/DR	80	88	 32	32	32

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ilr iit .

Cost Differentials for ML

Main Linac -KCS	Full Pow	Full Power 2625		# 1312	cost	Notes: basis = ChrisA's cartoon
	Quantity	Cost - M	Quantity	Cost - M	diff - M	27unitKCSpowerflow.pptx
Klystrons - 10 MW	714	206.3	499	153.7	-52.6	cost includes Learning Curve
Modulators & PS	714	377.7	499	282.4	-95.3	assumes same performance
KCS Pipe - meters	1428	1.4	998	1.0	-0.4	differential in RF Building
CTO Couplers - pairs	714	7.1	499	5	-2.1	klystrons to pipe in building
W.G. Switches - pairs	714		499			safety - have no unit cost
Cryogenics Plants - MW	10*4.42	228.1	10*4.12	218.8	-9.3	same cryo accessories & distrib
CFS: Civil		609.5		593	-16.5	
CFS: Electrical - MW	151.6	142.5	119.7	125.5	-17.0	red = changed since draft
CFS: Air + Cooling - MW	79.8	117.3	63.6	107.49	-9.8	
totals		1689.9		1486.9	-203.0	

Main Linac - DRFS	Full Power 2625		Reduced	l # 1312	cost	Notes:
modified 18jan2011	Quantity	Cost - M	Quantity	Cost - M	diff - M	based on DRF-Cost 110115A
Klystrons - 800 KW	7592	493.5	3796	247.0	-246.5	includes extra capaity for Low P
Magic Tees - Hybrids	7592	52.0	11690	80.0	28.0	for DC PS and Modulators
DC PS (incl backup)	584	174.0	584	65.1	-108.9	did not include "learning curves"
MA Pulser (incl backup)	876	52.6	437	35.0	-17.6	
Cryogenics Plants - MW	10*4.42	228.1	10*4.72	237.2	9.1	same cryo accessories & distrib
CFS: Civil		632.9		632.9	0.0	
CFS: Electrical - MW	182.3	186.7	167.8	171.8	-14.9	
CFS: Air + Cooling - MW	92.8	171.1	61.3	159.1	-12.0	
totals		1990.9		1628.1	-362.8	

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ΪįĹ

ILC - Global Design Effort

-tab: low-P - 21

IC DR & Summary Cost Differentials

						restore 262	5 bunches	
Damping Rings	Full Pow	ver 2625	Reduced	Reduced # 1312		1e-&2	e+DRs	Notes:
	Quantity	Cost - M	Quantity	Cost - M	diff - M	Quantity	Cost - M	
Technical Elements		425.8		276.3	-149.5		426.1	see DR detail sheet(s)
Cryogenic Plants - MW	2.16	19.9	0.77	9.6	-10.3	need info	need info	two cryo plants
Cryogenic Distribution		8.5		8.3	-0.2		12.8	50% more for 3 rings
CFS: Civil	6.4@5	127.8	3.2@7.5	107.3	-20.5		107.3	note 7.5 m tunnel to allow 3 rings
CFS: Electrical - MW	26.3	20.1	12.8	16.3	-3.8	19.2	18.1	
CFS: Air + Cooling - MW	19.5	32.0	8.5	24.2	-7.8	14.8	30.3	
totals		634.1		442.0	-192.1		594.5	

Summary (in M ILCU)	ML	DR	Total	wrt 6,618 M ILCU
Savings with KCS	-203	-192	-395	-6.0%
Savings with DRFS	-363	-192	-555	-8.4%

ILC - Global Design Effort

tab: low-P

restoration of 2625 bunches/train

- KCS relatively easy, increase size of RF building, install klystrons & modulators, on surface. Minimum impact on accelerator operations. Should install full Cryo plants from start (don't save that 9 M ILCU earlier)
- DRFS need to add many more klystrons in tunnel, interrupting accelerator operations.
 Due to higher cryo load for DRFS reduced # bunches, larger plants were installed and will not need upgrading.
- Damping Ring install a second Positron Ring, inj/extr e+ switches, and more cryo and power.

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

restoring 2625 bunches/train

	Full Power	to restor	e 2625	terminate	Notes
Main Linac -KCS	2625	initiallly	defer	at 1312	
	Cost - M	Cost - M	Cost - M	Cost - M	red = PHG guess
Klystrons - 10 MW	206	154	53	154	
Modulators & PS	378	282	95	282	
KCS Pipe - meters	1	1	0	1	
CTO Couplers - pairs	7	5	2	5	
W.G. Switches - pairs					
Cryogenics Plants - MW	228	228	0	219	could defer some compressors
CFS: Civil	610	593	17	593	defer buildings
CFS: Electrical - MW	143	134	9	126	assume some fraction ~ 50%
CFS: Air + Cooling - MW	117	112	5	107	assume some fraction ~ 50%
totals	1690	1510	180	1487	

Damping Rings - 3.2 km	Full Power	to restor	e 2625	terminate	Notes
1e+&1e-=>2e+&1e-	2625	initiallly	defer	at 1312	
	Cost - M	Cost - M	Cost - M	Cost - M	red = PHG guess
Technical Elements	426	276	150	276	maybe some extra/reconfigure
Cryogenic Plants - MW	20	20		10	could defer some compressors
Cryogenic Distribution	9	8	0	8	minor # new boxes
CFS: Civil	128	107	21	107	already paid for 7.5 m tunnel
CFS: Electrical - MW	20	18	2	16	assume some fraction ~ 50%
CFS: Air + Cooling - MW	32	28	4	24	assume some fraction ~ 50%
totals	634	458	176	442	

sums ML (KCS) + DR	2324	1968	356	1929	
difference = extra investir	ment cost =	1968	minus	1929	39 M ILCU (= 0.6% of 6.6 B ILCU)

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ilr iit .

ic check KSC optimization!

Is ChrisA's optimization of KCS for reduced # bunches optimal? He tried to minimize dynamic load on cryogenics system What if he took DRFS approach => cut # klystrons in half which forces longer t_rf pulse length?

Full Power	-	KCS appr	oach	DRFS approach			
714 klys	206 M	499 klys	194 M	357 klys	116 M		
714 mod	378 M	499 mod	282 M	357 mod*	251 M		
Cryo 4.42	<u>228 M</u>	cryo 4.12	<u>219 M</u>	cryo 4.72	<u>237 M</u>		
Total	812 M		695 M		604 M		

This used LC = 90% for klystrons, 88.5% for mods

* I did multiply by modulator cost by sqrt(2.159/1.564) = 1.175 Have not looked at cost for increased pulse length for klystron Have not looked at Electrical & Cooling ~ 27 M less for DRFS Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011 LC - Global Design Effort 25

Backup notes

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ilC

errors, omissions, inconsistencies

- CFS: no CMU fire-rated enclosure for DRs, however, this would be no differential cost
 Not needed for DR due to new understanding of fire protection reqs for single tunnels
- CFS did not vary the power requirements for Cryogenics Plants for DR (used RDR for all)
- CFS did not change capacity of DR service buildings for electrical and cooling, but did vary for cryogenics
- CHECK THIS OUT!

curious plot!

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011

ΪĻ

http://www-ilcdcb.fnal.gov/cost-confidentiality-official-njw.pdf

This meeting will involve discussion of actual cost estimating numbers and data

"review" access has been granted by the GDE Executive Committee to cost data

- questions are allowed, but

- no hard copy or e-file

you must agree (or have previously agreed) not to discuss outside of context of this meeting, publish, or post on public web-site any cost estimating information

Reduced # Bunches Impacts PHG - BAW-2 SLAC - 19jan2011