

TF Studies: A very first look

K. Buesser & N. Walker

What is required for TF?

İİĹ

Apply an additional (coherent) shift of $-\sqrt{3\sigma_z/2}$

Note: Guinea Pig applies to both planes

First idea: use strong sextupole in FD with fast orbit bump to generate additional focus over bunch length (crab cavity)

Generating The Crab Waist

Effectiveness of Orbit Bump

Waist shifts at IP as a function of horizontal kick at cavity location

Very small kick required (<% σ)

Very linear

Factor 100 stronger in x than y \otimes (not unexpected)

(Ideally we would like to have two independent knobs)

Impact on beam size

Relative change in beam size at the shifted waist as a function of kick

Typically <1% effect for <1% σ kick

ilr

ΪĹ

Required Cavity Kick for TF

- Can't control both so just set vertical
- Waist shift of particles at z in bunch = z/2 – i.e. $dW_y/dz = \frac{1}{2}$ [$\Rightarrow dW_x/dz = 50$!]
- At crab cavity: dθ/dz = 0.5 / 7×10³ = 7.14×10⁻⁵ m⁻¹

 $- 300 \mu m \times d\theta/dz = 20 nrad (0.003 \sigma)$

For a 1.3 GHz cavity / 250 GeV: V = 650 kV

Comments on Tracking Simulation

- Gaussian 6D bunch generated first at IP
- Initial coherent waist shifts ($\sqrt{3\sigma_z}/2$) applied numerically.
 - In real world assume this to be done with waist knobs.
- Back-tracked through FFS to location of cavity to provide initial tracking distribution
 Generates the correct correlations in bunch
- Required horizontal crab-kick applied and particles tracked forward to the IP

Initial Results

 Tracked particle files (electrons/positrons) used in Guinea Pig

İİL

First result showed reduction of luminosity by ~30% (i.e. 1.4×10³⁴) ⁽⁸⁾

- Simulated interactions for
 - RDR 500 GeV
 - SB2005 500 travelling focus
 - SB2005 500 no travelling focus
- Dependency of luminosity vs vertical beam offsets
- Dependency of luminosity on gaussian vertical beam jitters
- Dependency of vertical kicks vs beam offset

Vertical Kick vs Beam Offsets

Kick angle (urad)

İİĻ

Kick angles RMS In each bunch (urad)

RDR-500 (left), TF-500 (right)

Lumi vs Vertical Offset

RDR-500 (top)

SB2009 500-nTF (middle)

SB2009 500-TF (lower)

Offset in Sigma_y: 5.7 nm for RDR 5.9 nm for 500-nTF 3.8 nm for 500-TF

Lumi vs Vertical Beam Jitter

İİİ

RDR-500 (top)

SB2009 500-nTF (middle)

SB2009 500-TF (lower)

Offset in Sigma_y: 5.7 nm for RDR 5.9 nm for 500-nTF 3.8 nm for 500-TF

Error bars show RMS of lumi distributions