TLCC Themes

TLCC Themes

TLCC Themes

BAW-2 Themes

Reduction of # bunches (2625 \rightarrow 1312)

- Reduced beam power \rightarrow reduced RF
- Smaller damping rings (6.4 km \rightarrow 3.2 km)
- Regain luminosity via stronger focusing at IP
- Re-location of e+ source to end Main Linac
 - Better integration (central came & Friday (at 500 GeV running) ⇒ reputsday risk
 Issues of running for Earling figher overhead

								upgrade
Centre-of-mass energy	E_{cm}	GeV	200	230	250	350	500	1000
Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5	0.5	0.7	0.8	1.5	2.8
Luminosity (Travelling Focus)	L _{TF}	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5		0.8	1.0	2.0	
Number of bunches	n_b		1312	1312	1312	1312	1312	2625
Collision rate	f_{rep}	Hz	5	5	5	5	5	4
Electron linac rate	f_{linac}	Hz	10	10	10	5	5	4
Positron bunch population BAW-2, SLAC, 19 January 2011	N	×10 ¹⁰ S Walker Yam	$\frac{2}{2}$	2	2	2	2	4 2

BAW-2, SLAC, 19 January 2011

Approach to finding 15%

Approach to finding 15%

BAW-2, SLAC, 19 January 2011

Approach to finding 15%

Not an option Reduce Ecm to 350 Ge⁻ Adopted approach

Any one saving may seem small

ilc

But all are required to achieve the target

Find 8 ~2% effects

Find many (hundre ppm savings

Ross Walker Yamamoto

VALUE engineering Insufficient resources

SB2009 Cost Increments

ijĻ

Costing effort: 2011-2012

- TDR will reflect SCRF and CFS progress
 - (beyond RDR 2007)
 - Technical advancement (esp. R & D)
 - Project strategy (design, industrialization, siting)
 AND COST
- Balance performance scope and accelerator system design against these cost drivers
- Motivation for Cost Containment
 - Development of SCRF 2007→
 - − Siting 2010 →

İİL

Cost Containment Estimated Impact:

- RDR ML Technical Cost:
 - 2/3 cold SCRF
 - 1/3 Modulator/infrastructure, Klystron, Power Distribution
 - 1/2 Modulator
 - ¹⁄₄ Klystron
 - 1⁄4 PDS
- Half-Power ~ 16% ML technical reduction
- Could offset up to ~25% cold SCRF 'increase'
- TDR cost breakdown will differ \rightarrow 2011

- 1. A reduction in Main Linac beam current, and therefor beam power, and an associated reduction in the number of klystrons, modulators and power supplies (primary cost saving).
 - Key conventional facilities support for the full RDR RF power will be installed upfront during construction, in support of future possible upgrade to higher bunch numbers (risk mitigation).
- 2. A corresponding reduction in the circumference of the damping rings from 6476 m to 3238 m (i.e. 50%), while maintaining the DR current approximately constant. This includes the associated reduction in DR R approximately 50% (primary cost saving).

ic

- 3. The reduction in current will be achieved by reducing number of bunches per pulse (n_b) by a factor of two from 2625 to 1312.
 - increasing the linac bunch spacing
- 4. An increase in the DR tunnel diameter to accommodate the possibility of installing a third damping ring (second positron damping ring) at some later date, if required (risk mitigation).
- 5. Adoption of stronger focusing at the interaction point (enhanced beam-beam) – including the possibility of travelling focus – to provide the required luminosity (maintaining performance at higher risk).

ΪĹ

Low Power Parameters

Parameter	unit	RDR (nom.)	TLCC		
E _{cm}	GeV	500	500		
Rep. rate	Hz	5	5		
Q _{bunch}	nC	3.2	3.2		
Bunches/pulse		2625	1312		
LINAC RF paramet	ers:				
RF pulse length	ms	1.6	KCS: 1.6 DRFS: 2.2		
Beam current	mA	9	KCS: 6 DRFS: 4.5		
Damping Ring:					
Circumference	m	6476*	3238		
Avg. Current	mA	388	390		
Damping time	ms	21	24		
RF power	MW	3.97	1.76		
BAW-2, SLAC, 19 January	2011	Ross Walker Yamamoto			

ijĻ

- Focus on 500 GeV centre-of-mass
 - Low E_{cm} →cf
 'Positron Source
 Relocation'
- Different parameters for DRFS and KCS(RDR T.O.).

 2x3.2km DR with reduced bunch number (@5Hz)

- Gradient Spread (BAW 1)
 - RDR design: fixed 31.5 MV/m
 - TDR baseline: 31.5 avg +/- 20%
 - Penalty: Increased HLRF overhead (10 15%)
 - (offset by decreased cavity cost; model dependent)
- Single Tunnel (BAW 1)
 - Facilitate siting through flexible HLRF technology
 - Penalty: different criteria for CFS / Cryo design
- Restoration of full beam parameters
 - Penalty: Identify and reserve space / support equipment needs

HLRF – two technical options

- Both options subject to R & D; Both to be (hopefully) included in TDR
- Different optimum bunch parameters
 - Both have reduced plug—to-beam efficiency

Key Main Linac HLRF parameters at 500 GeV centre-of-mass (approximate numbers)

Parameter	unit	RDR (nominal)	KCS	DRFS
Beam current	mA	9	6	4.5
Bunch spacing	ns	369	535	738
Beam pulse length	μs	969	702	969
RF fill time	μs	595	862	1190
RF pulse	μs	1564	1564	2159

(Susanna, Mark and Junji)

Reduce Circumference 2x:

- Design of 3.2 km DR
- (including component counts, cost savings and upgrade path configurations with 2 and 3 rings)

Evaluate e+ instability thresholds for

- increasing the number of bunches at a later stage
- Electron cloud issues at 1312 and 2625 bunches
- DR cost ~ 10% RDR (1/3 CFS)

Technical cost does not scale → some component counts are fixed

50% reduction P_{beam} ⇒ ×2 *L* recovery via enhanced beam-beam (BDS)

- stronger focusing (tighter tolerances, see below)
- higher disruption / beamstrahlung etc.
- travelling focus
- Collimation depth issues
- Modular FD concept (for low Ecm running)

Cost neutral

- travelling focus hardware has negligible cost

A higher risk scenario?

Note reduced average beam power reduces risk in many subsystems

Concern with operational aspects and tighter tolerances

- Collision (luminosity) stability
- more demands on beam-beam feedback
- Emittance preservation in RTML, ML and BDS
- Overall tuning strategies and *integrated* luminosity performance

Luminosity @ 500 GeV cm

- TF parameter set is self consistent with 2×10³⁴ cm⁻² s⁻¹
 - based on 'built-in' TF model in GUINEA PIG
- Advanced studies have only now just started. started late 🟵
 - Understanding how to generate the crab-waist
 - Understanding what the realistic impact of this is
 - Closer look at tolerances etc.
- Achieving and stabilising this 2×10³⁴ cm⁻² s⁻¹ under this regime will be very challenging Top ~30% of the luminosity 'risky'

İİL

ilc

- Important to discuss scenarios for increasing the bunch number 1300→2600
 - At some later date, after initial construction.

• Damping Ring:

- Additional 3.2km ring for positrons \rightarrow no parameter changes
- 2625 bunches in single (existing) electron ring
 - 780 mA avg. current
 - 4.84 MW power
- Tunnel/alcoves spec'd for 3 stacked rings.

HLRF

- Add klystrons/modulators/power supplies
- Scenarios for CFS support
 - what must we invest in up-front to support this

Complete studies left for TDP-2

but qualitatively, scenarios need to be discussed at BAW-2

+ / - Reduced Beam Parameters

- Pro's:
 - Largest single-item cost impact
 - Minimum technical risk for the change itself
 - Manageable restoration path
 - KCS, DRFS, DR
- Con's:
 - Luminosity reduction to be compensated in BDS
 - Reduced ML efficiency
 - Significant cost penalty to maintain restoration path
 - DR, CFS

- Authored by PMs
- Scope points from slides 12 & 13
- More detailed description of technical scope
 - DR and HLRF parameters
 - Component count tables
- Issues

İİİ.

- Luminosity performance
- Physics impact (short summary)
- Cost Summary

To be submitted to Director by end of next week