Higgs Branching ratio study

BAW2 meeting @SLAC Jan. 19. 2011 H. Ono (NDU), A. Miyamoto (KEK)

Higgs Branching Ratio measurement

Measurement of the branching ratio is one of the issue of ILC especially for Higgs quark decays (H \rightarrow bb/cc)

Higgs study with different Ecm

Ecm=250 GeV (ZH production threshold around 230 GeV at Mh=120 GeV)

- Largest production cross-section with Z/H almost at rest
 - Suit for mass and cross-section measurement with recoil study
- <u>Higgs-strahlung (ZH) process</u> dominant

Ecm=350 GeV

- Reduce cross-section and <u>Z/H will be boosted</u>
- Increase <u>W/Z fusion process</u> contribution
- <u>tt background</u> should be considered

	RDR (LOI)			SB200	2009 w/ TF		NB w/TF		
Ecm (GeV)	250	350	500	250	350	500	250	350	500
Peak L (10 ³⁴ cm ⁻² s ⁻¹)	0.75	1.2	2.0	0.27	1.0	2.0	0.8	1.0	2.0
Integrated L (fb ⁻¹)	188	300	500	67.5	250	500	200	250	500

Peak Luminosity is also changed with different Ecm. →Study the effect of different Ecm for BR study TF : beam traveling focus

ZH BR analysis procedure

Background reduction (Compare at L=250 fb⁻¹)

Neutrino (vvH) mode BG reduction

Selection criteria

- 1. Missing mass (Mz)
- 2. Transverse momentum
- 3. Longitudinal momentum
- 4. # of charged tracks
- 5. Maximum momentum
- 6. Y values (Y values threshold)
- 7. Di-jet mass (M_H)

Di-jet mass after all cuts w/o b-tag

Each cut position is optimized for 250 and 350 GeV with assuming L=250fb-1

Significance	Sig. cc	Sig. bb			
250 GeV	2.27(1.96)	37.14 (32.16)			
350 GeV	2.66	42.16			
() : L=188fb ⁻¹ as RDR250 scale					

Missing mass cut is loose at 350 GeV from W-fusion contribution

Signal significance improve at <u>350 GeV</u>

qqH mode analysis (reported at IWLC2010)

Selection criteria

- 1. Jet paring χ^2
- 2. # of charged tracks
- 3. Y_{34} (3 \rightarrow 4 Jet paring Y threshold)
- 4. Thrust
- 5. Thrust angle
- 6. H jets angle
- 7. Z mass

8. H mass

Significance	Sig. cc	Sig. bb			
250 GeV	1.16(1.00)	19.37 (16.77)			
350 GeV	2.03	32.12			
() : L=188fb ⁻¹ as RDR250 scale					

Jet pair combination from 4 jets

$$\chi^2 = \left(\frac{M_{12} - M_Z}{\sigma_Z}\right)^2 + \left(\frac{M_{34} - M_H}{\sigma_H}\right)^2$$

Minimum χ^2 pairs are selected

Higgs mass after all cuts w/o b-tag

Cut positions are optimized for both 250 and 350 GeV with L=250 fb⁻¹

() : L=188fb⁻¹ as RDR250 scale Significance improve at <u>350 GeV</u>

Lepton (eeH, µµH) mode analysis

Electron/Muon identification

- 1. Lepton isolation + track energy selection
- 2. Calorimeter Edep information Electron deposits its most of energy at ECAL

If # of candidates > 2 :

select di-lepton whose mass is closest to Mz

No large difference in Lepton ID efficiency

Lepton mode (IIH) background reduction

Branching fraction estimation with flavor information

Flavor tagging performance comparison

In LCFIVertex package, flavor tagging is trained with $Z \rightarrow qq$ (Ecm=91.2GeV) Flavor tagging performance is compared with $ZZ \rightarrow vvqq$ sample at Ecm=250, 350 GeV (Including $Z \rightarrow qq$ same quark composition)

Simple BR extraction

Apply flavor-likeness cut after all the BG reduction to evaluate BR measurement accuracy and consistency with template fitting

Set flavor-likeness cut position at maximizing sig. significance

Simple flavor-likeness cut analysis

Accuracy of Relative branching fraction

$$\Delta \frac{BR(H \to cc)}{BR(H \to bb)} = \sqrt{\left(\frac{\Delta \sigma_{cc}}{\sigma_{cc}}\right)^2 + \left(\frac{\Delta \sigma_{bb}}{\sigma_{bb}}\right)^2}$$

Relative BR is dominated by $H \rightarrow cc$ accuracy

- Absolute relative errors are worse by loose cut in qqH, rely on the template fitting Electron
- IIH mode become worse from low statistics (eeH)

Measurement accuracies of $H \rightarrow cc$ are improved at <u>350 GeV</u> except for lepton mode from the better significance at 250GeV (Especially by narrow recoil mass distribution)

<u>Maximizing signal significance is a key for BR measurement</u> →Check this tendency with template fitting analysis case

 $\Delta\sigma/\sigma$ (bb) $\Delta\sigma/\sigma$ (cc)

1.7%

1.3%

1.8%

1.9%

4.1%

5.8%

3.6%

5.3%

30.9%

24.0%

58.2%

30.6%

51.4%

56.8%

41.4%

59.2%

Ecm

250

350

250

350

250

350

250

350

Neutrino

 $(\nu\nu H)$

(qqH)

Muon

Hadron

Template fitting analysis

Relative BR with template fitting

To improve the flavor cut efficiency and measurement accuracy of BR template fitting has applied and evaluate the relative branching fraction

Relative branching fraction

$$\frac{Br(H \to c\overline{c})}{Br(H \to b\overline{b})} = \frac{r_{cc}/\varepsilon_{cc}}{r_{bb}/\varepsilon_{bb}}$$

V

 $\begin{array}{l} r_{xx} \ : N_{xx} / N_{Hall} \ \mbox{fraction after BG reduction} \\ \epsilon_{xx} \ : \mbox{BG reduction efficiency} \end{array}$

 r_{bb} / r_{cc} are extracted with the $\underline{template\ fitting}$ as fit parameter

Poisson statistics are considered for each template sample bin

$$p_{ijk} = \frac{\mu^{A} e^{-\mu}}{X!} \quad X = N_{ijk}^{data} \mu = N_{ijk}^{template} = \sum_{s=bb,cc,others} \left(\frac{N^{Hall}}{N^{s}}\right) N_{ijk}^{s} + r_{bkg} N_{ijk}^{bkg}$$

$$L = -\log P = -\log \left(\prod_{i,j,k} P_{ijk}\right) = -\sum_{i,j,k} (\log P_{ijk})$$

$$Template fitting has applied with minimizing L$$

3D template samples histogram

Fitting results with c-likeness smoothed

From the template fitting analysis for 250 and 350 GeV, we improve the measurement accuracy and obtain the same tendency for 250 and 350 GeV with simple cut analysis

Absolute value of the accuracy of relative BR			Ecm	Δ BR(cc)/BR(bb)
has changed from IWLC2010		Neutrino	250	20.7%(28.9%)
because low statistics bins are ignored		(vvH)	350	14.2%
to suppress the over estimation		Hadron	250	23.0%(31.3%)
IIH modes are relatively worse from the smalle	(qqH)	350	16.4%	
entries and obtain the better accuracy again at		Muon	250	39.5%(45.3%)
250 GeV (μμΗ)		(μμΗ)	350	43.9%
		Electron	250	47.5%(50.9%)
~25% becomes better in accuracy at		(eeH)	350	37.8%
<u>Ecm=350 GeV with vvH, qqH mode.</u>		Combined	250	13.7%(18.0%)
Luminosity reduction makes accuracy		combined	350	10.0%
worse ~25% as same as luminosity scalin	g	(): L=188	Prelii fb ⁻¹ sca	minary results aled as RDR250
11/01/19 BAW2 meeting physics		Statist	ical e	rror only 17

Summary

- Obtain slightly better BR measurement accuracy at 350 GeV
 - ~25% improvement from 250 GeV with same L=250fb⁻¹
 - ~25% degradation with L=188fb⁻¹ (RDR250 parameter) as same fraction as peak luminosity reduction
- tt background contribution looks not so large at the 350 GeV (set just 1GeV above the threshold in this sample)
- Significant difference of flavor tagging performance is not observed in vvqq sample comparison
- Better selection efficiency at <u>350 GeV</u> because of better mass resolution and signal separation from background
- Recoil mass resolution is much better at <u>Ecm=250 GeV</u>

Backup

vvH BG reduction summary

-	Ecm=250 GeV with L=250 fb ⁻¹ (188fb ⁻¹ for RDR250)						
Processes	$H \to c \bar{c}$	$H o b ar{b}$	$\nu \bar{\nu} H$ all	SM BG			
Generated	698(523)	12904 (9678)	19360(14343)	44827141 (33811100)			
All cuts	315(237)	5863(4397)	6731(5048)	19059 (14294)			
Efficiency	ε_{cc} : 45.20%	ε_{bb} : 45.44%	34.77%	0.04%			
$S/\sqrt{S+B}$	2.27(1.96)	37.14(32.16)					

Ecm=350 GeV with L=250 fb^{-1}

Processes	H ightarrow c ar c	H ightarrow bb	$\nu \bar{\nu} H$ all	SM BG
Generated	930	17604	26307	18509500
All cuts	603	10424	12338	50947
Efficiency	ε_{cc} : 64.86%	ε_{bb} : 59.21%	46.90%	0.28%
$S/\sqrt{S+B}$	2.66	42.08		

Better signal significance is achieved at 350 GeV

qqH BG reduction summary

Ecm=250 GeV with L=250 fb ⁻¹ (188fb ⁻¹ for RDR250)
--

Processes	$H \to c \bar{c}$	H ightarrow bb	All Higgs	SM B.G.
Generated	1916(1437)	34963 (26222)	52507(39380)	44827100 (33620300)
All cuts	663(498)	11287 (8465)	14386(10790)	328338 (246253)
Efficiency	ε_{cc} : 34.64%	ε_{bb} : 32.28%	27.40%	0.73%
$S/\sqrt{S+B}$	1.16(1.00)	19.37(16.77)		

	E	cm=350 GeV with	n L=250 fb⁻¹		
Processe	es	$H ightarrow c \bar{c}$	H ightarrow bb	All Higgs	SM BG
Generate	d	1296	24051	36099	18496100
All cu	ts	427	7245	9165	43638
Efficience	y	ε_{cc} : 32.97%	ε_{bb} : 30.12%	26.82%	0.35%
$S/\sqrt{S+A}$	B	2.03	32.12		

μµH BG reduction summary

	Ecm=250 GeV w	0)		
Processes	H ightarrow c ar c	H ightarrow bb	All Higgs	SM BG
No cuts	104(78)	1945 (1466)	2917(2188)	4518210 (3388920)
All cuts	63(47)	1052 (789)	1387(1040)	980 (735)
Efficiency	ε_{cc} : 60.62%	ε_{bb} : 53.86%	47.55%	0.02%
$S/\sqrt{S+B}$	1.95(1.69)	23.34(20.22)		

Ecm=350 GeV with L=250 fb^{-1}

Processes	H ightarrow c ar c	$H o b ar{b}$	All Higgs	SM BG
No cuts	69	1186	1789	3826930
All cuts	35	479	639	465
Efficiency	ε_{cc} : 51.04%	ε_{bb} : 40.41%	35.70%	0.01%
$S/\sqrt{S+B}$	1.57	15.59		

eeH BG reduction summary

Ecm=250 GeV with L=250 fb ⁻¹ (188fb ⁻¹ for RDR250)						
Processes	$H \to c\bar{c}$	$H \to b\bar{b}$	All Higgs	SM BG		
No cuts	115 (87)	2088(1566)	3132(2349)	4518350(3388760)		
All cuts	55 (41)	895(671)	1179 (885)	1610 (1207)		
Efficiency	ε_{cc} : 47.83%	ε_{bb} : 42.86%	37.66%	0.04%		
Significance	1.35(1.17)	17.89 (15.49)				

Ecm=350 GeV with L=250 fb^{-1}

Processes	$H \to c\bar{c}$	$H \rightarrow b \bar{b}$	All Higgs	SM BG
No cuts	99	1787	2740	3825980
All cuts	34	416	567	581
Efficiency	$\varepsilon_{cc}:34.34\%$	ε_{bb} : 23.30%	20.68%	0.02%
Significance	1.38	13.18		

Fitted results

	vvH		qqH		mumuh		eeh					
Ecm (GeV)	25	50	350	25	50	350	25	50	350	25	50	350
Lumi (fb–1)	188	250	250	188	250	250	188	250	250	188	250	250
r _{bb}	0.8697	0.8712	0.8465	0.7859	0.7860	0.7920	0.7601	0.7595	0.7502	0.7644	0.7631	0.7353
Δr_{bb}	0.0222	0.0182	0.0167	0.0465	0.0355	0.0234	0.0488	0.0408	0.0338	0.0708	0.0609	0.0426
r _{cc}	0.0469	0.0473	0.0494	0.0464	0.0457	0.0468	0.0454	0.0454	0.0539	0.0467	0.0474	0.0622
Δr_{cc}	0.0135	0.0097	0.0069	0.0143	0.0103	0.0075	0.0203	0.0178	0.0236	0.0234	0.0222	0.0233
Rel BR	0.0542	0.0546	0.0532	0.0551	0.0542	0.0540	0.0531	0.0531	0.0569	0.0548	0.0557	0.0574
∆Rel BR	0.0156	0.0113	0.0076	0.0173	0.0125	0.0088	0.0240	0.0210	0.0250	0.0279	0.0265	0.0217
resol (%)	28.9%	20.7%	14.2%	31.3%	23.0%	16.4%	45.3%	39.5%	43.9%	50.9%	47.5%	37.8%
εbb	0.4544	0.4544	0.5921	0.3228	0.3228	0.3012	0.5386	0.5386	0.4041	0.4286	0.4286	0.2330
ECC 033	0.4520	0.4520	0.6486	0.3464	0.3464	0.3297	0.6062	0.6062	0.5104	0.4783	0.4783	0.3434