

Introduction for CF Work in Mountain Regions

GDE Asian Regional Team KEK A. Enomoto

Overview

- Introduction
- ILC Design and Cost Containment for Conventional Excilition
- **Conventional Facilities**
- Asian Site Features
- TDP2 Design Concepts

Introduction

WHAT IS ILC?

International Linear Collider (ILC)

- Experiment Overview -

- a continuous center-of-mass energy range between 200 GeV and 500 GeV
- a peak luminosity of $\sqrt{2 \times 10.34}$ m⁻²s⁻¹, and an availability (75%) consistent with producing 500 fb⁻¹ in the first four years of operation²;
- > 80% electron polarization at the Interaction Point (IP);
- an energy stability and precision of ≤ 0.1%;
- an option for ~60% positron polarization;
- options for $e^- e^-$ and $\gamma \gamma$ collisions.

In addition, the machine must be upgradeable to a center-of-mass energy of 1 TeV

ILC 'Area System'

- Superconducting Electron/Positron Linear Accelerators-

Design Progress from 2005 to 2009

Reference Design Report (RDR) published in 2007.

Re-baselining for cost containment undergoing.

Boundary conditions and guidelines for design works

ILC DESIGN & COST CONTAINMENT

Construction Cost Profile

Main Linac (ML) RF Unit in RDR

- Twin-tunnel accelerator configuration -

Service Tunnel

37.956 m

e- ML	282 RF units	Field gradient:	31.5 MV/m
e+ ML	278 RF units	Energy gain per RF unit :	850 MeV
Total	560 RF units	(with 22% tuning overhead)	

11:00-11:30 Hitoshi Hayano, Cryomodule Requirements

RDR(2007) to TDR(2012) - Cost Containment -

- RDR: 6.62 BILCU (4.80 Shared + 1.82 Site Specific) + 14.1 kPerson
- SB2009: 7 working assumptions with ~13% cost reduction
- One of the most cost-effective assumptions is:
 - 2. <u>A single-tunnel solution</u> for the Main Linacs and RTML, with two possible variants for the High-Level RF (HLRF):
 - Klystron cluster scheme (KCS);
 - Distributed RF Source scheme (DRFS).

ML Single-Tunnel Configuration

- Klystron Cluster System (KCS)-

e- ML	282 RF units
e+ ML	278 RF units
Total	560 RF units

Field gradient31.5 MV/mEnergy gain per RF unit850 MeV(with 22% tuning overhead)

ML RF Units - Klystron Cluster System (KCS) -

~2.4 km (32 x 2 RF units)

ML Civil Engineering

- Klystron Cluster System (KCS) -

ML Single-Tunnel Life Safety

- Americas Region-

NFPA 520-2005 (Subterranean Spaces) Prescribes 2 paths of travel to an exit or refuge area. The travel distance to be less than 610 meters.

ML Single-Tunnel Life Safety

- European Region-

SHAFT

- Control of the pressure from both ends of a sector.
- Control of the pressure (overpressure or underpressure in each area).
- Fire detection per sector compatible to fire fighting via water mist.

ML Single-Tunnel Configuration

- Distribute RF System (DRFS) -

e- ML	282 RF units
e+ ML	278 RF units
Total	560 RF units

Field gradient31.5 MV/mEnergy gain per RF unit850 MeV(with 22% tuning overhead)

ML RF Unit - Distributed RF System (DRFS) -

11:30-12:00 Shigeki Fukuda, HLRF Requirements

ML Civil Engineering (DRFS)

11:30-12:00 Shigeki Fukuda, HLRF Requirements

ML Single-Tunnel Life Safety

- Asian Region-

Cryogenic System Configuration in RDR

TABLE 3.8-4						
ILC cryogenic plant sizes ((sources listed	separately h	here, but may	be combined	with Main	Linac).

Area	# of Plants	Installed Plant Size (each) (MW)	Total Installed Power (MW)	Operating Power (each) (MW)	Total Operating Power (MW)
${\rm Main\ Linac\ +\ RTML}$	10	4.35	43.52	3.39	33.91
Sources	2	0.59	1.18	0.46	0.92
Damping Rings	2	1.26	2.52	0.88	1.76
BDS	1	0.41	0.41	0.33	0.33
Total			47.63		36.92

Cryogenic System in Mountainous Site

2KHe Refrigerator:Main Tunnel4.4 KHe Refrigerator & He Compressor:Access Tunnel

12:00-12:30 Kenji Hosoyama, Cryogenic Requirements

Electrical / Mechanical Requirements - Electricity in RDR -

TABLE 4.3-1

Estimated nominal power loads (MW) for 500 GeV centre-of-mass operation.

			Conventio				
Area System	RF Power	Conv	NC Magnets	Water Systems	Cryo	Emer Power	Total (by area)
Sources e ⁻	1.05	1.19	0.73	1.27	0.46	0.06	4.76
Sources e ⁺	4.11	7.32	8.90	1.27	0.46	0.21	22.27
DR	14.0	1.71	7.92	0.66	1.76	0.23	26.29
RTML	7.14	3.78	4.74	1.34	0.0	0.15	17.14
Main Linac	75.72	13.54	0.78	9.86	33.0	0.4	134.21
BDS	0.0	1.11	2.57	3.51	0.33	0.20	7.72
Dumps	0.0	3.83	0.0	0.0	0.0	0.12	3.95
Totals (by system)	102.0	32.5	25.6	17.9	36.9	1.4	216.3

Electricity Distribution

- 66 kV High Voltage Line Along The Site (Asian Regional Plan) -

AREA		TOTAL	1	1 RTM	L ML-7/	A 7		ML-7B	ML-5/	A	UND 5	ML-5B	ML-3A	3	KAS+5GV	BDS	1 BD	S 13	DR	12	e-Inj+5GeV	2	ML-2A	ML-4B	4	ML-4A	ML-6B	ML	-6A R	(ML	_
Length					1550			2480	2167		1257	2246	2476		1266	960	960	0			1266		2476	2171		2095	2480	15	550		
Total site power (max)																															
Total site power (@500GeV)		223.7		8.6	7.7	6.	3	12.3	10.7		17.5 6.8	11.1	12.3	3.4	4.9	5.7	0.3 5.7	13.1	0.0	13.1	4.9	3.4	12.3	10.7	6.8	10.4	12.3 6.8	7.	.7 8	4.6	
				8.6		26.	7				46.2			20.6			11.7					20.6			27.9		26.1	1	8	1.6	_
1.3-GHz SCRF unit																															_
no.				16	40			64	56			58	64		8						8		64	56		54	64	- 4	0	16	
AC plug-in (max)	MW	98.3		2.5) 6	3.47		10.35		9.06		9.38	10.35		1.29						1.29		10.35	9.06		8.73	10.35		6.47	2.59	_
AC plug-in (@500GeV)	MW	89.9		2.3	7 5	5.92		9.47		8.28		8.58	9.47		1.18						1.18		9.47	8.28		7.99	9.47		5.92	2.37	_
Conventional	MW	14.7		0.3) (0.97		1.55		1.35		1.40	1.55		0.19						0.19		1.55	1.35		1.31	1.55		0.97	0.39	
NC magnets	MW	0.8		0.0	2 0	0.06		0.09		0.08		0.08	0.09		0.01						0.01		0.09	0.08		0.08	0.09		0.06	0.02	_
Water system	MW	10.7		0.2	3 0	0.70		1.13		0.99		1.02	1.13		0.14						0.14		1.13	0.99		0.95	1.13		0.70	0.28	
Emergency	MW	0.4		0.0	1 0	0.03		0.05		0.04		0.04	0.05		0.01						0.01		0.05	0.04		0.04	0.05		0.03	0.01	
Cryogenic plant																															_
no.							2				2			1	1		1	1		1	1	1			2		1	2			
Installed power (max)	MW	47.6				8.	70				8.70			4.35	0.59		0.41	1.26		1.26	0.59	4.35			8.70		8.7	0			
Operation power (@500MeV)	MW	36.9				6.1	78				6.78			3.39	0.46		0.33	0.88		0.88	0.46	3.39			6.78		6.7	В			_
Others																															
RF	MW	10.5		1.2)						3.06				0.00			7.00		7.00	0.00									1.20	_
Conventional	MW	17.8		1.5)						6.13				1.00	2.47	2.4	17 0.86		0.86	1.00									1.50	
NC magnets	MW	24.8		2.3	5						8.17				0.72	1.29	1.2	29 3.96		3.96	0.72									2.35	_
Water system	MW	7.2		0.3)										1.13	1.76	- 1.3	76 0.33		0.33	1.13									0.39	
Emergency	MW	0.9		0.0	3						0.15				0.05	0.16	0.1	16 0.12		0.12	0.05									0.06	

2620 RDS

Area System Heat-load (RDR)

TABLE 4.5-1

Summary of heat loads broken down by Area System.

Area System	LCW (MW)	Chilled Water (MW)	Total (MW)
Sources e^-	2.880	1.420	4.300
Sources e^+	17.480	5.330	22.810
$DR e^-$	8.838	0.924	9.762
$DR e^+$	8.838	0.924	9.762
RTML	9.254	1.335	10.589
Main Linac	56.000	21.056	77.056
BDS	10.290	0.982	11.272
Dumps	36.000	0.000	36.000
Total Heat Los	ad (MW)		182

ML Components' Heat-load (RDR)

TABLE 4.5-2

Typical Main Linac RF component heat loads.

Components	Tunnel	Total (KW)	Average (kW)	To Water (KW)	To Air (KW)
RF Charging Supply 34.5 KV AC-8 KV DC	service	4.0	4.0	2.8	1.2
Switching power supply 4kV 50kW	service	7.5	7.5	4.5	3.0
Modulator	service	7.5	7.5	4.5	3.0
Pulse transformer	service	1.0	1.0	0.7	0.3
Klystron socket tank / gun	service	1.0	1.0	0.8	0.2
Klystron focusing coil (solenoid)	service	4.0	4.0	3.6	0.4
Klystron collector/ body/windows	service	58.9	47.2	45.8	1.4
Relay racks (instrument racks)	service	10.0	10.0	0.0	-1.5
Circulators, attenuators & dummy load	beam	42.3	34.0	32.3	1.7
Waveguide	beam	3.9	3.9	3.5	0.4
Subtotal Main Linac RF unit (KW)			120		

ML Cooling System (RDR) - Main Loops -

FIGURE 4.5-1. Process water system at shaft 7 plant.

FIGURE 4.5-2. Chilled water system at shaft 7 plant.

*: max

ML Heat-load Table (DRFS)

<u>Sep 9 2009</u>

WATER AND AIR HEAT LOAD for SB2009 DRFS Full Power Option

MAIN LINAC - ELECTRON & POSITRON					_																					
								То	Dirty Wa	ter						ToLo	w Conductivi	ity Water				to Chilled Water	keith Jobe Nov :	load to air	To Fan C	oil Chilled
										Maximu		Accepta													Heat	Jer
										m		ble		Max								Heat Load	Power		Load to	
				Total	Average	Heat	Supply	Delta		Allowabl	Typical	Temp	Heat Load	Allowabl	Supply		Delta		Maximum	Typical	Acceptab	to Rack	fraction		Fan Coil	Max
		Our state Base		Heat	Heat	Load to	Temp	Temper	Water	e	(water)	Variatio	to	е т	Temp	Supply	Tempera	Water	Allowable	(water)	le Temp	Chilled	to	Power to	Chilled	Space
Components		26m	Location	(KW)	(KW)	(KW)	(variatio	delta)	min)	(Bar)	drop Bar	C	(KW)	ture (c)	(variatio	C)	delta)	min)	(Bar)	drop Bar	delta C	(KW)	Air (0-1)	Air (KW)	(KW)	C)
Non-RF Components				((((/						- /	,		1							
LCW Skid Pump 1 per 4 rf - <u>Motor/Feeder Loss</u>		0.25	Service Tunnel	0.60	0.60	0.00	N/A	N/A		N/A	N/A	None	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	None	0	1.00	0.60	0.60	
I^2R Loss and Motor Loss (misc)		1	Service Tunnel	0.00	23.39								0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	None	0	1.00	23.39	12.00	1
Fancoils (5 ton Chilled Water) 1.5 Hp Pack Water Skid		2	Service Tunnel	2.91	2.91	0.00	N/A N/A	N/A N/A		N/A	N/A N/A	None		N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	None	•	1.00	0.20	2.91	1
Lighting Heat Dissipation ~1.3W/sf		0.25	Service Tunnel	1.65	1.65	0.00	N/A	N/A		N/A	N/A	None	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	None	0	1.00	1.65	1.65	
AC Pwr Transformer 34.548 kV		0.25	Service Tunnel	2.00	2.00	0.00	N/A	N/A		N/A	N/A	None	1.50			35					None	0	0.25	0.50	2.00	
Emerg. AC Pwr Transformer 34.548 kV			Service Tunnel	1.00	1.00	0.00	N/A	N/A		N/A	N/A	None	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	None	0	1.00	1.00	1.00	
RF Components																										
High Voltage Circuit Breaker (6.6 kV)		1/76 m	Single Tunnel																							.
DC Power Supply, 6.6 kV (In), 60 kV, 4 A (Out), 250 kW, 90%	Rack 1	1/76 m	Single Tunnel		25.00								15.00	50.00								0.00	0.40	10.00	10.00	.
eπ. DC Power Supply 6.6 kV (In) 60 kV (-A. (Out) 250 kW 90%													-	-												.
eff. (Backup)	Rack 2	1/76 m	Single Tunnel																							.
Modulating Apode Modulator, 6.6 kV /Shunt 1.0 A, then 6 kW																										.
heat load)	Rack 3	1/76 m	Single Tunnel		6.00								3.60	50.00								0.00	0.40	2.40	2.40	.
,																										.
Modulating Anode Modulator, 6.6 kV (Shunt 1.0 A, then 6 kW	Rack 4	1/76 m	Single Tunnel																							.
heat load), (Back-up)																										.
AC Transformer to Low Voltage (400/200/100 V)		1/152 m																								.
																										.
Heater P/S, 200V,36A, 7.2kW	Rack 3	1/76 m	Single Tunnel		1.00									50.00								1.00	0.00	0.00	0.00	.
									ļ		ļ															.
Camp as above (Pask up)	Dark	100 00	Cinele Tunnel																							.
Same as above (back-op)	NOCK 4	27011	Single romer																							.
Pulse Transformer		None																								.
Klystron Socket Tank / Gun			Cinele Tunnel										6	6										6		.
0.3 kWX 26		26/76 m	single ronner		7.00								0.24	00.00								0.00	0.20	1.50	1.50	.
Klystron Focusing x 26	ND	26/7 m		4 1	-			-			1		lin	C	~	1		h		20						.
(Permanent Magnet) Klystron Collector	IJК	Fð	пес	н	Đã	He.	нe			a (e		4 0 -		D	et	H	211	Ю	er-	4	H	1				.
4.5 kW X 26	-	26/76 m	Single Tunnel	r	117.00				1 1				113.49	87.00	- r				- -			0.00	0.03	3.51	3.51	85 E (a)
																								-		- · · ·
Klystron Body & Windows		26/76 m	Single Tunnel		7.52								5.51	40.00								0				.
LLRF Racks																										.
LLRF+Amp +Int, 200V,2.5A /5 modules	Rack 5	1/76 m	Single Tunnel		0.35			ļ			ļ			50.00								0.35	0.00	0.00	0.00	.
LLRF+Amp +Int, 200V, 2.5A /5 modules	Rack 6	1/76 m	Single Tunnel		0.35		ļ	ļ	 		ļ		L	50.00								0.35	0.00	0.00	0.00	.
LLRF+Amp +Int, 200V,1.5A /3 modules	Rack 7	1/76 m	Single Tunnel		0.21									50.00								0.21	0.00	0.00	0.00	.
(LLRF+Amp +Int, 200V,1.5A /3 modules, for full power op.)	Rack 7	1/76 m	Single Tunnel		0.21						 			50.00								0.21	1.00	0.21	0.21	.
(LLRF+Amp +Int, 200V,2.5A /5 modules, for full power op.)	Rack 8	1/76 m	Single Tunnel		0.35		ļ	ļ	ļ		ļ			50.00								0.35	2.00	0.70	0.70	.
(LLRF+Amp +Int, 200V, 2.5A /5 modules, for full power op.)	Rack 9	1/76 m	Single Tunnel		0.35			<u> </u>	ļ		ļ			50.00								0.35	3.00	1.05	1.05	.
Other Racks																										.
Timing , 200V, 0.5kW	Rack 10	1/76 m	Single Tunnel		0.50									50.00								0.50	0.00	0.00	0.00	.
Timing , 200V, o.5kW	Rack 11	1/76 m	Single Tunnel		0.50				l					50.00								0.50	0.00	0.00	0.00	, I
Cavity, 200V,3 kW	Rack 12	1/76 m	Single Tunnel	2.95	2.05				-		I		-	50.00								2.05	0.00	0.00	0.00	.
Cavity, 200V,3 kW	Rack 13	1/76 m	Single Tunnel	2.95	2.05			ļ	ļ					50.00								2.05	0.00	0.00	0.00	.
Cryogenics, 200V, 2.1KW	RaCK 14	1/76 m	Single Tunnel	l	2.10		 	 	 		<u> </u>			50.00								2.10	0.00	0.00	0.00	.
Lryogenics, 200V, 2.1 KW	Rack 15	1/76 m	Single Tunnel		2.10									50.00					-			2.10	0.00	0.00	0.00	.
DPM o Mag, 200V, 5 KW	RaCK 16	1/76 m	Single Tunnel		5.00				T				-	50.00					-			5.00	0.00	0.00	0.00	.
BPM & Mag, 200V, 5 kW	Rack 17	1/76 m	Single Tunnel		5.00									50.00								5.00	0.00	0.00	0.00	.
RF Loads																										.
Attenuator		None																								.
Waveguides in service tunnel	l	None				l	<u> </u>																			, I
Waveguides in penetration		None	alarda a randa				-	-																		.
Waveguides in beam tunnel		26/76 m	Single Tunnel		1.60		-	-					0.00	 					-			0.00	1.00	1.60	1.60	, I
Circulator with load		None	diasta Trans 1		45.00																					, I
RF Loads		26/76 m	single Tunnel		45.60		-	-					44.23										0.03	1.37	1.37	
Uther Loads		4.6		4.70	0.00		<u> </u>	<u> </u>																		
ruise motor ior input coupier/tuner		(26+26)/76 m		1.79	0.00		-	-															1.00	0.00	0.00	
vacuum Pumps		(2+2)/76 m			1.26			<u> </u>											-				1.00	1.20	1.26	
Cuberchill DF main Only				——		<u> </u>							100	├											22.65	
Subtotal RF unit Only					233.90		-	1		I			100.07								-	22.12			23.06	
Total Nr		I				0.0	1						L	1												

11:30-12:00 Shigeki Fukuda, HLRF Requirements

DRFS Local Cooling Scheme

Basic configuration not changed ΔT optimization will be done in TDP2

11:30-12:00 Shigeki Fukuda, HLRF Requirements

HVAC System

- Heating, Ventilation, and Air-Conditioning system design (RDR, Asia) -

Drainage System

- Drainage system design (RDR, Asia) -

13:30-15:30 Masanobu Miyahara,

Boundary conditions and guidelines for design works

MOUNTAINOUS SITE FEATURES & CIVIL ENGINEERING

General Requirements for ILC Sites

- Uniform geology
- Tunnel depth < 600m
- Avoid residential area, because
- hard to get acknowledgement from the inhabitants from the view
- point of radiation problem and public construction
- Avoid active fault
- Avoid major epicenters (M>7) having taken place since 1,500
- Avoid large fault (W > 1m),
- especially those running parallel to the tunnel route
- Enough electric power supply
- We need about 350 MW
- Enough length to accommodate 50km tunnel
- Examined on 51 items for each candidate site

Site candidates for JLC (2000-2003)

KEK Report 2002-10, Report of JLC Site Study Group, page 9.

Site Candidates in Japan

I. Area with good geology

- 1. Hidaka
- 2. Kitakami
- 3. Murakami
- 4. Abukuma
- 4b Kita-Ibaraki
- 5. Aich-Gifu
- 6. Takamatsu
- 7. Hiroshima
- 8. Seburi

II. Research and development bases

- 1. Mutsu-Ogawara
- 2. Tsukuba (KEK)
- 3. Mt. Tsukuba
- 4. Harima (SPring-8)
- 5. Okinawa

KEK Report 2002-10, Report of JLC Site Study Group, page 9.

Mainly granite geology through 50-km length

Geotechnical Review 2006

- Site Assessment Working Group – (Japan Society of Civil Engineers)

Access to Underground Tunnel

- By Horizontal (Sloped) Tunnel s-

Case	Access way	Schematic Layout
RDR	Sloped Tunnel	Exercise Road

Sloped Tunnel Length (m) and Cost (kY)

Point ID	A	В	С	D
P11	1,215	502	1,608	1,859
P7	1,565	1,256	1,005	1,407
P5	1,577	2,161	1,507	1,708
P3	1,713	2,663	1,206	2,613
P12	1,501	2,563	904	1,960
P13	1,403	2,764	854	1,909
P2	1,157	3,467	1,005	2,311
P4	653	3,668	1,005	2,211
P6	938	3,467	1,658	2,211
P10	771	1,960	703	1,909
Total (m)	12,493	24,471	11,455	20,098

Access to Underground Tunnel

- By Shafts and Horizontal Tunnel s-

Horizontal Tunnel (L_H) and Vertical Shaft (L_V)

	ļ.	ł	В		C		D	
Point ID	L _H (m)	L _v (m)	L _H (m)	L _V (m)	L _н (m)	L _V (m)	L _н (m)	L _v (m)
P11	0	140	150	90	575	205	750	240
P7	560	220	50	410	300	100	80	210
P5	526	210	150	645	30 0	140	830	260
P3	1,330	170	150	490	0	190	450	380
P2	130	70	730	345	0	80	500	350
P4	180	100	500	430	20 5	140	490	260
P6	140	100	1,350	485	940	230	250	390
P10	100	80	1,375	290	240	70	480	220
P12	0	110	700	445	400	110	320	270
P13	370	130	400	445	540	100	570	260
	3,336	1,330	5,555	4,075	3,500	1,365	4,720	2,840

Boundary conditions and guidelines for design works

PRELIMINARY STUDY FOR TDP2

BY

CONVENTIONAL FACILITY WORKING GROUP ADVANCED ACCELERATOR ASSOCIATION PROMOTING SCIENCE AND TECHNOLOGY

Single-Tunnel Accelerator Configuration

- Guideline for Design in Asian Region -

Keypoints for TDP2 Design Concepts

Cost Reduction from RDR

(Deep) Single-Tunnel Accelerator Configuration

Should be harmonized with

Applicability to Site and Environmental Conservation

Less surface facilities and plants

Life Safety / Accessibility to Underground Accelerator

Enough evacuation / access passages

Risk reduction for tunnel excavation

Heading for the main accelerator tunnel

Advantage of Topology

Spontaneous drainage of sump water

10:30-11:00 Masakazu Yoshioka, CF Concepts

Single-Tunnel Accelerator Configuration

- Basic Design Concepts in Asian Region -

RDR <u>2-Tunnel + Access Tunnel/Shaft Config</u>uration SB2009 1.5-Tunnel + Access Tunnel/Shaft Configuration

Site Layout Example

- Asian Region-

Overall Civil Layout (Final)

13:30-15:30Masanobu Miyahara

Boundary conditions and guidelines for design works

SUMMARY

Summary

- RDR demonstrated a realistic ILC design based on a sample site and a construction cost.
- Cost containment is a primary concept in TDR.
- Single-tunnel accelerator configuration is one of the working assumptions for such a request.
- A single-tunnel accelerator configuration which meets the Asian potential sites' conditions is under investigation.

Boundary conditions and guidelines for design works

APPENDIX

Drainage System

- Sump water and Geology in Japan-

协资公据	比湧水量の範囲	平均比湧水量
地員力現	m³/min/km	m³/min/km
火山岩、火山砕屑岩	$0.85 \sim 10$	3. 71
	$0.035 \sim 0.9$	0.30
深成岩類(含片麻岩)	$0.17 \sim 3.8$	1.38
	0.018 ~ 0.84	0.20
古生屬、中生屬	$0.10 \sim 4.5$	0.79
	0.0 ~ 0.95	0.17
第 砂礫層 三	0.02 ~ 3.6	0.84
紀 砂岩・頁岩・凝灰岩	$0.014 \sim 0.95$	0.25
洪 泥岩 積 世	0.0 ~ 0.26	0.07

(出典:(社)日本トンネル技術協会『トンネル施工に伴う湧水渇水に関する

調査研究(その2)報告書』昭和58年2月)

Drainage System

- An Example of Drainage Tunnel in Japan-

排水設備

名称	ポンプ1	ポンプ2	ポンプ3					
た 卑	竜飛	竜飛	吉岡					
117.16	作業坑	斜坑	斜坑					
排水量								
(ポンプ室	10m2/4	8m2/4	16m2/4					
への流水	19113/ 7	0113/ 75	10113/ 23					
量)								
ポンプ台	10m3/分×	02/42 × 2	12m2/42×6					
数	3	ama/ 77 × 3	12m3/ 75 × 6					

Tunneling

- Rock hardness and Geology-

			7	長− 岩の	let	朝	o	pł	Fic	£۲	Ē		S	ed	im	er	Ita	ry				igneous							
4	4	称			围	Ţ		棄I	戊岩:	811	び堆積	遺岩					堆	積岩	•						火				
					±	岩		Da	主と	して	古生日	. т.		- • •		「世行	ť		第.	三紀	_		280	成岩				些	
A	В	С	· 載: 明	適 用	交通省岩分類	種グループ 別	中 初 領 片 領 片 潤	▲ 黒 岩 片 岩	日緑色片岩	子 秋 月 岩	しる一次	砂 岩	粘板岩	µ 輝緑凝灰岩 ;;	しおり		い い う う う わ	夏岩泥岩	砂岩	凝灰岩	橫灰角鷸岩	花 こ う 岩	センマを出	ハンレイ皆	蛇紋岩	诫 紋 岩	ヒ ン 岩	安 玄 山 武 岩 光	: 集 : 魂 : 岩
	岩塊玉石	岩塊玉石	岩塊、玉石が混入して掘削しにくく、バケッ ト等に空隙のでき易いもの 岩塊、玉石は粒形7.5cm以上としまるみのある ものを玉石とする。	玉石まじり土 着鬼起砕された着 ごろごろした河床							↓ Ii	s i me	an es	ds toi	ito ne	ne				Ç	gra	ini	ite				-		
	軟 措 ~	^{較岩 I} 40 MP;	第三紀の岩石で固結の程度が弱いもの、風化 がはなはだしくきわめて脆いもの、指先で離 しうる程度のもので亀裂の間隔は1~6 cmく らいのもの及び第三紀の岩石で固結の程度が 良好なもの、風化が相当進み多少変色を伴い 軽い打撃で容易に割れるもの、離れやすいも ので、亀裂間隔は5~10cm程度のもの	地山淨性該速度 700~2800m/sec	軟 岩 1	A B		Δ	•	•	•	•	•	•	•	W	ea	th △	er	ed •	•		•		•	•			-
岩 ま た	~	_{軟岩}	凝灰質で整く固結しているもの、風化が目に そって相当進んでいるもの、亀裂間隔が10~ 30cm程度で軽い打撃により離しうる程度、異 質の硬い呉層をなすもので層面を楽に離しう るもの		軟 岩 Ⅱ	A B		0	•	•			▲ △		▲ △	4		0	00	40	۵ 0	•	•		0	•			0 0
は 石		中硬岩 120 ME	石灰岩、多孔賞安山岩のように、特にち密で なくても相当な墜さを有するもの、風化の程 度があんまり進んでいないもの、硬い岩石で 間隔30~50cm程度の亀裂を有するもの	地山彈性波速度 2000~4000m/sec	中硬岩	A B		0	Δ		00		40	0	00	00	0	fro	es	0 h	0				0	Δ			4
	硬 岩	夜漫 I 160 MI	花崗岩、結晶変岩等で全く変化していないもの、電裂間隔が1m内外で相当密着しているもの、硬い良好な石材を取り得るようなもの	地山弾性波速度	硬 岩 I	A (0	00	S	0	0	0		C	2					0	0)	0	00	000)
		硬岩 200 MF	けい岩、角岩などの石英賀に富む岩石で最も 硬いもの、風化していない新鮮な状態のも の、亀裂が少なく、よく密着しているもの	3000m/sec以上	硬岩Ⅱ	A	Q			G		0																	
•	 全体に変化 物は ロルジ 	とが進み変色	しているもの。			割れ	目に	谷 つ	て風	化変	色が	少な	<.	岩片	内部	邪は新	新鮮	なも	ø,										

○割れ目が少なく風化変色がほとんどなく新鮮で硬いもの。 ◎ 岩石が特に硬く全く新鮮なもの。

* Aグループは、花崗岩・安山岩・砂岩・珪岩のように、造岩物質、固結変共に固く、風化が進み、亀裂が入って、弾性波速度が遅くても、岩片耐圧強度の高い岩種類。

* Bグループは、頁岩・粘板岩・黒色片岩のように、造岩物質が軟らかく、風化が進むと泥化し新鮮なもので弾性被速度が早くても、岩片耐圧強度の低い岩種類。

注) 輝緑凝灰岩は、地質資料によっては玄武岩質火山噴出物(火砕岩、溶岩)と呼称される。