Conceptual Design Study - Cryogenic Requirements

- How to decide the layout of ILC cryogenic system
- Conceptual design of cryogenic system
- Layout of cryogenic system for site A & B
- Helium inventory
- Cooling water for cryogenic system
- Summary & Future Plan

May 31, 2010 K. Hosoyama How to decide the layout of cryogenic facility ?

Key Issues

- 2K cold boxes must be installed in the tunnel at 5 km intervals
- Installation, maintenance & repair of large components: compressor unit, cold box
- Safety in case of helium gas leakage
- Construction & operation cost
- Use the access tunnel and assembling area of TBM effectively !

Cryogenic plant arrangement / Reference design

A cryogenic "string"

Cryosystem design status

Main Linac Layout - 1

Type 4 cryomodule pipe sizes

Properties of Helium

Conceptual Design of Cryogenic System 1

There are m a n y options for layout of cryogenic system, but

1.the helium ref. cold boxes must be installed in the tunnel, 2.Installation of the compressor units in underground tunnel looks reasonable.

Conceptual Design of Cryogenic System 2

Cross section of tunnels

- 1. The 4K cold box will be carried through the access tunnel and installed in the cavern at the end of access tunnel.
- 2. The 2K cold box must be carried through main tunnel.

Cold box for LHC 18 kW at 4.5K Ref.

4K Helium Ref. Cold box

18kW Helium Ref. Cold box / CERN LHC

Transportation of the cold box

- The 4K ref. cold box can be installed in cavern prepared for assembling TBM.
- The size of the cold box will be limited by transportation on road from factory to the site.

Cavern at the end of access tunnel: used for assembling TBM for the tunnels

Cold Compressor for LHC 2K Refrigerator

IHI's four-stage cold compressor system fulfills the various operation modes required in 1.8K refrigeration unit of LHC

Helium Compressor

- The helium compressor is installed in the cavern constructed near by the access tunnel.
- Location of the cavern is ~ 100 m away from the main tunnel to avoid the vibration issues by the compressor.

Compressor + Motor 5 m x 1.9 m x 2 m H

He Refrigeration System for Main Linacs (site-B)

Main Tunnel

Access Tunnel

Comment :

2K cold boxes

4.4 K cold box & compressors

- 1) Need high performance multi-transfer line.
- End of access tunnel a large space will be prepared for assembling a TBM. This space can be used f o r a 4.4 K cold box.
- 3) Compressor unit will be installed far away from main tunnel in the cavern near by access tunnel.
- 4) Helium will be recovered as liquid in the Dewar installed near by 4.4 K refrigerator cold box.

- 2K Ref. cold box (+ cold compressor)
- 4.4 K Ref. cold box
- He Compressor

He Refrigeration System for Main Linacs (site-A)

Comment :

- 1) Need high performance multi-transfer line.
- End of access tunnel and shaft a large space will be prepared for assembling a TBM. This space can be used for a 4.4 K cold box.
- 3) Compressor unit will be installed ~100m away from main tunnel in the cavern near by access tunnel.
- 4) Helium will be recovered as liquid in the Dewar installed near by 4.4 K refrigerator cold box.

- 2K Ref. Cold box (+ cold compressor)
- 4.4 K Ref. cold box
- He compressor unit

Helium Inventory

Required Liquid Helium ~ 650,000 L

ILC Cryogenic Systems Reference Design T.J. Peterson et al. CEC Vol. 53

Recovery of helium during shutdown? 1) Gas Helium Storage $\sim 100 \text{ m}^3 / \text{ unit x } 250 \text{ units}$

Standard Gas Storage Tank 100 m^3 (D3 m x L15 m)

1L Liq. Helium ---- 0.7 Nm^3 Gas Helium 100 m³ x 18 = 1800 ---- ~ 2600 L

2) Liquid Helium Storage ~ 50,000 L / unit x 12 units

Liq. Helium Dewar ~ 50,000 L (D2.5 m x L10 m)

Vaporization loss: 50,000 L x 0.5%/day = 250 L / day ~10 L/hr

Small refrigerator can be used as "Baby-Sitter"

Conceptual Design of Water Cooling System

Comment :

- 1) Cooling tower A can support cooling of local heat load.
- Cooling tower cluster can support cooling of ~ 8km long distributed heat load. The cooling water circulate in 900 mm in diameter pipe.
- By installation of the cooling tower in the tunnel, we can eliminate heat exchanger which need to cut the head pressure.

Cooling Tower in the Tunnel

Helium Refrigeration System Cooling Tower in Tunnel

Helium Refrigeration System in Tunnel

Top View Oil Removal Liq. He Distribution & Driers Storage Box 000 10 m \bigcirc \bigcirc \bigcirc **Oil Separators** Cold Box **Cooling Towers** Compressors Compressors Low pressure High pressure **Tunnel Cross Section** Side View ₽ 10 m D 10 m ¥ 10 m **Oil Removal** D 7 m & Driers Compressors Compressors Liq. He Distribution **Cooling Towers Oil Separators** Low pressure Storage High pressure Box Cold Box

Helium Refrigeration System Cold Box / Compressor

Summary & Future Plan

- The 2K cold boxes will be installed in the small caverns in main tunnel at 5 km intervals.
- The 4K cold boxes will be installed in the large caverns at the end of access tunnels prepared for assembling the TBM.
- The 2K cold box with cold compressor and the 4K cold box is connected by multi-transfer line installed in the main tunnel.
- The compressors will be installed in the caverns constructed alongside the access tunnels.
- Large amount of helium inventory will be reserved as liquid helium during shutdown of cryogenic system.
- The cooling water used in the compressors will be supplied by local cooling tower or cluster of cooling towers trough 900mm in diameter piping.
- We need the engineering design study of cryogenic system collaboration with industry.

Appendix 1: Pressure Drop and Power Loss in He Pipes

Appendix 2: Pressure Drop and Power Loss in Water Pipes

