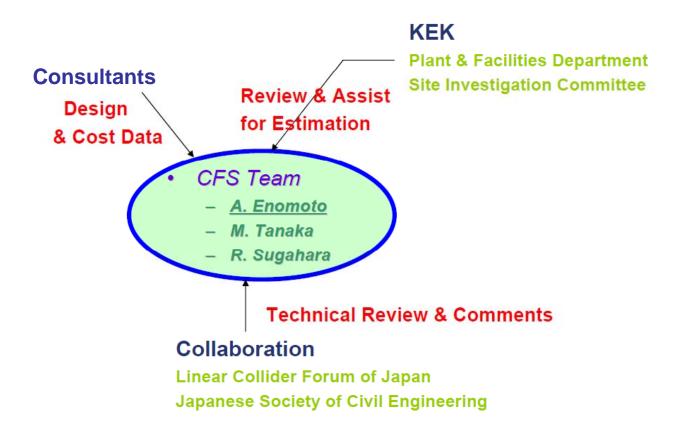
TDP2 Plan

Atsushi Enomoto (KEK)


BCD - RDR (2005 ~ 2007)

Geotechnical review for the potential sites
Chose a proper sample site for BCD/RDR
Applied the ILC layout to the site
Tunnel/cavern design
Construction methods and schedule study
Establish unit costs for civil works
Shared works (communication, safety equip.)
Design (double tunnel) and Cost estimates

KEK CFS Review, 1-3 June 2010

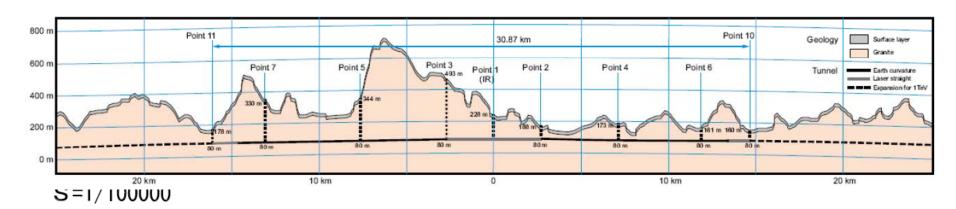
BCD - TDP1

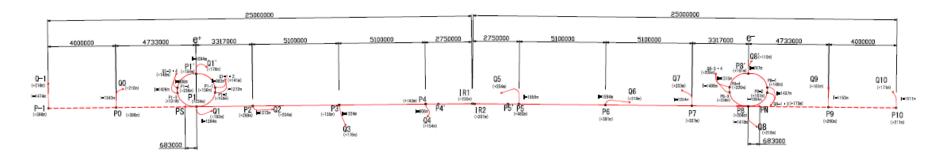
- FY2005 - 2008 Asian CFS Team -

KEK CFS Review, 1-3 June 2010

Study Items between 2005 to 2009 -

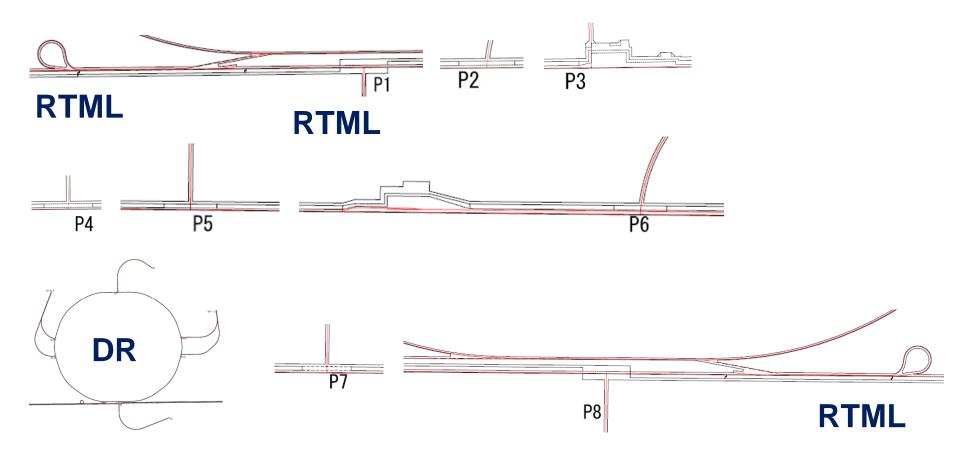
	FY	2005	2006	2007	2008	2009	2010	2011	2012
CFS Design Activity	Phase		RDR	RDR/TDP1	TDP1	TDP1	TDP1/TDP2	TDP2	TDP2
(Siting)									
Study for ILC 50 km sites		Study							
Tunnel excavation		Study							
Site geology		Study							
Access shafts/tunnels configuration									
Technical review for site candidates	(JSCE)		Review	>					
(Facility)									
Study for ILC conventional facilities (1)		BCD							
Study for ILC conventional facilities (2)			RDR						
Value engineering for RDR		1	4						
Implementation for electric substations									
Civil engineering review (1)	(JSCE)		Review	Review					
Civil engineering support activity (1)	(LCFJ)	Study	Study						
Civil engineering support activity (2)	(AAA)								


JSCE: Japanese Society of Civil Engineers


LCFJ: Linear Colider Forum in Japan

AAA: Advanced Accelerator Association Promoting Science and Technology

KEK CFS Review, 1-3 June 2010


Development of ILC Layout at Sample Site

Ex. Design of Underground Structures

Ex. Design of Underground Structures

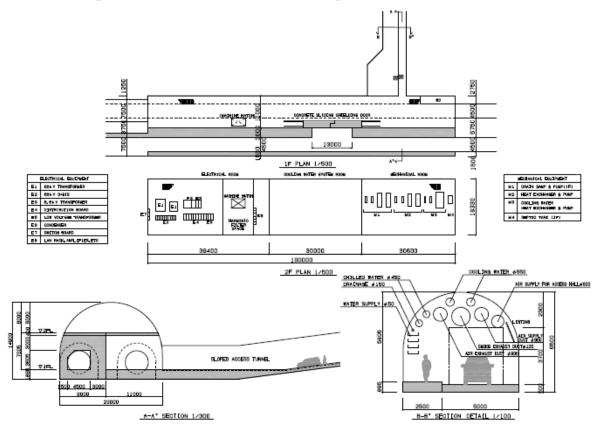
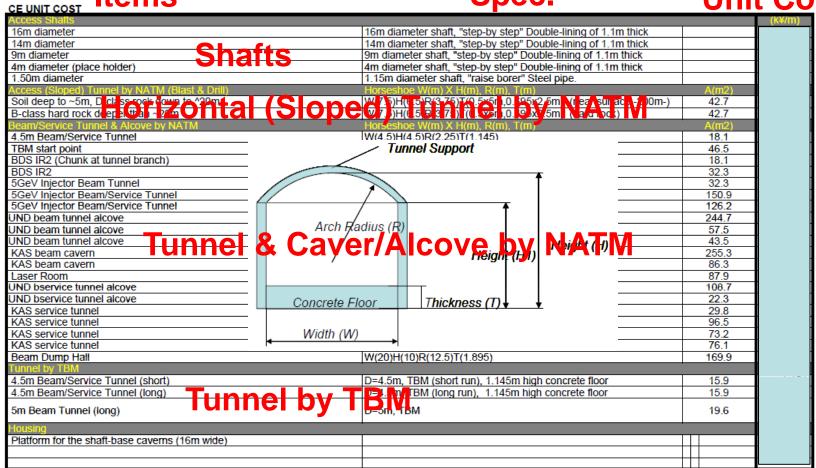
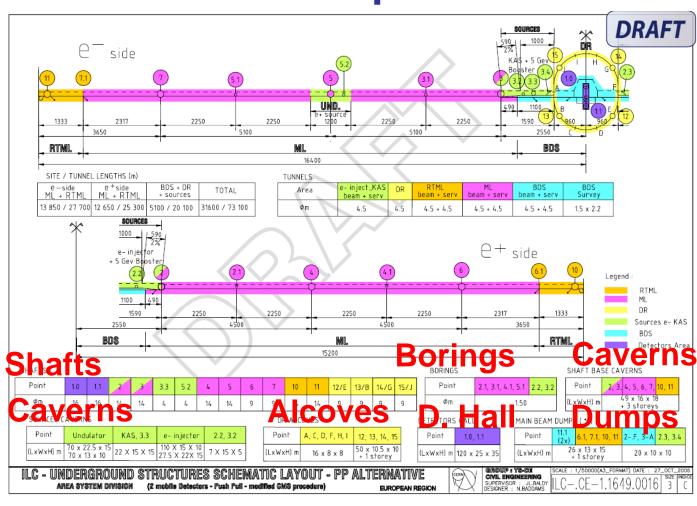



FIGURE 5.3-1. Detail of an access ramp for the Asian Sample Site.



Establish Tunnel and Cavern Unit Costs Spec. Unit Cost

Cost Estimation Scope for Civil in RDR

Global Design Effort - CFS

Cost Estimate WBS in RDR Estimate Items Unit Costs Values

		Louisiate Items			
Cod	le	Item	Description	Unit	Unit Cost k¥
17		Conventional Facilities			
171		Civil Engineering			
17	711	Engineering, study work and documentation			
	17111	In-house Engineering	Distribute 952kman-hours (80peraonsX1700hX7years) with the budget rates		
	17112	Outsource consultancy	10%(underground civil engineering), 5%(others)		
17	712	Underground Facilities			
	17121	Shafts			

17	7122	Tunnels				
	171221	Beam Tunnels				
	1.7E+07 1.7E+07	e-RTML(Turnaround) e-RTML(P11 to Turnaround)	Horseshoe shape, 4.5m wide, 4.5m high, NATM, 1.146m high concre	length length		Ŧ
	1.7E+07	e-RTML P11 (P7.1 side)	Horseshoe shape, 7m wide, 6.5m high, NATM	length		
	1.7E+07 1.7E+07	e-RTML(P11 to P7.1) e-Main linac(P7.1 to P7)	D=4.5m, TBM, 1.145m high concrete floor	length length		F
	1.7E+07	e-Main linac P7 (P5 side)	Horseshoe shape, 7m wide, 6.5m high, NATM	length		#
	1.7E+07	e-Main linac(P7 to P5)		length		
	1.7E+07	e+ Source (UNDULATOR)	D=4.5m, TBM, 1.145m high concrete floor	length		- 1
	1.7E+07	e-Main linac P5 (P3 side)	Horseshoe shape, 7m wide, 6.5m high, NATM	length		- 1
	1.7E+07	e+ Source (UNDULATOR)	D=4.5m, TBM, 1.145m high concrete floor	length		- 1
	1.7E+07	0.4GeV e+ Source (tunnel alcove 154m))				
	1.7E+07	e-Main linac(P5 to P3)	D=4.5m, TBM, 1.145m high concrete floor	length	m	
	1.7E+07	e- 5GeV/ e+ 0.4GeV beam line	· · · · · · ·	length	m	
	1.7E+07	0.4 GeV Keep Alive Source (see tunnel alcove =167m)				I
	1.7E+07	e+ 4 6GeV Rooster	Horseshoe shape, 4.5m wide, 4.5m high, NATM, 1.145m high concre	length		Π
	1.7E+07	e+ 5GeV Injection line		length		Ι
	1.7E+07	e- 5GeV Extraction line		length	m	
	1.7E+07	e-5GeV damping ring	D=5m, TBM	length	m	Г
	1.7E+07	e-BDS 14mrad beamline	D=4.5m, TBM, 1.145m high concrete floor	length	m	
	1.7E+07	(IR)	D=4.5III, TBINI, 1.145III High Condete libor	length	m	
	1.7E+07	e+BDS_Survey tunnel	1.5m wide, 2.2m high, excavated by handbreaker	length		П
	1.7E+07	e+BDS 14mrad beamline	D=4.5m, TBM, 1.145m high concrete floor	length	m	П
	1.7E+07	e+BDS P2 (BDS side)	Horseshoe shape, 7m wide, 6.5m high, NATM	length		П
	1.7E+07	e+ 5GeV Extraction line	Horseshoe shape, 4.5m wide, 4.5m high, NATM, 1.145m high	length	m	П
	1.7E+07	e- 5GeV Injection line	concrete floor	length		П
	1./E+0/	e-4.6GeV booster		length		
	1.7E+07	e-0.07GeV beam analizer	Horseshoe shape, 7.5m wide, 5m high, NATM, 1.145m high	length	m	L
	1.7E+07	70MeV e-Pre-injector	Horseshoe shape, 10m wide, 6.5m high, NATM, 1.145m high	length	m	П
	1.7E+07	Concrete shield	Concrete wall	length	m	П
	1.7E+07	Gun Room	Horseshoe shape, 16.2m wide, 9m high, NATM, 1.145m high	length		IT
	1.7E+07	e+ 5GeV beamline	Horseshoe shape, 4.5m wide, 4.5m high, NATM, 1.145m high concrete	f length	m	П
	1.7E+07	e+Main linac(P4 to P2)	D=4.5m, TBM, 1.145m high concrete floor	length	m	IT
	1.7E+07	e+Main linac(P6 to P4)		length	m	-
	1.7E+07	e+Main linac P6 (P4 side)	Horseshoe shape, 7m wide, 6.5m high, NATM	length	m	IT
	1.7E+07	e+Main linac(P6.1 to P6)	D=4.5m, TBM, 1.145m high concrete floor	length		- 1
	1.7E+07	e+RTML(P10 to P6.1)	D-4.3III, TDW, T. 143III HIGH CONCRETE HOOF	length	m	I
	1 7F+07	e+RTML P10 (P6.1 side)	Horseshoe shape, 7m wide, 6.5m high, NATM	lenath	m	
	1.7E+07	e+RTML(P10 to Turnaround)	Horseshoe shape, 4.5m wide, 4.5m high, NATM, 1.145m high	length	m	

TDP1

 $(2007 \sim 2010)$

Value engineering

Ex. Cooling-water system ∆t, etc.

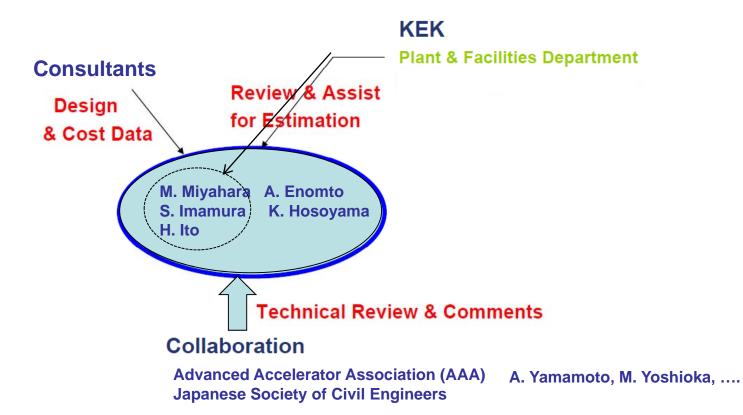
→ Single-tunnel scheme

Strawman Baseline (SB) 2009

- . Single-tunnel + KCS/DRFS
- . Central region rework etc.

Study Items between 2005 to 2009 -

OFS Design Astists	FY	2005	2006	2007	2008	2009	2010	2011	2012
CFS Design Activity	Phase	BCD	RDR	RDR/TDP1	TDP1	TDP1	TDP1/TDP2	TDP2	TDP2
(Siting)									
Study for ILC 50 km sites		Study							
Tunnel excavation		Study							
Site geology		Study							
Access shafts/tunnels configuration						Rework			
Technical review for site candidates	(JSCE)		Review	>					
(Facility)									
Study for ILC conventional facilities (1)		BCD							
Study for ILC conventional facilities (2)			RDR				1		
Value engineering for RDR		1	1		Rework	T	/		
Implementation for electric substations						Study	ľ		
Civil engineering review (1)	(JSCE)		Review	Review					
Civil engineering support activity (1)	(LCFJ)	Study	Study						
Civil engineering support activity (2)	(AAA)					Study			


JSCE: Japanese Society of Civil Engineers

LCFJ: Linear Colider Forum in Japan

AAA: Advanced Accelerator Association Promoting Science and Technology

TDP2

- FY2010 - 2012 Asian CFS Team -

Study Items between 2005 to 2009 -

0F0 D : A :: '	FY	2005	2006	2007	2008	2009	2010	2011	2012
CFS Design Activity		BCD	RDR	RDR/TDP1	TDP1	TDP1	TDP1/TDP2	TDP2	TDP2
(Siting)									
Study for ILC 50 km sites		Study						$\square \setminus$	
Tunnel excavation		Study							
Site geology		Study						\	
Access shafts/tunnels configuration						Rework			
Technical review for site candidates	(JSCE)		Review	>					
(Facility)									
Study for ILC conventional facilities (1)		BCD					N		
Study for ILC conventional facilities (2)			RDR				1		
Value engineering for RDR		1	1		Rework	T			
Implementation for electric substations						Study	//		
Civil engineering review (1)	(JSCE)		Review	Review					
Civil engineering support activity (1)	(LCFJ)	Study	Study					\Box	
Civil engineering support activity (2)	(AAA)					Study		'	

JSCE: Japanese Society of Civil Engineers

LCFJ: Linear Colider Forum in Japan

AAA: Advanced Accelerator Association Promoting Science and Technology

Summary of TDP2 Basic Plan

 $(2010 \sim 2012)$

- (1) Single-Tunnel accelerator configuration CFS design will be developed in a couple of Japanese potential sites.
- (2) Both DRFS and KCS will be considered as HLRF scheme, while concentrating on DRFS, because of our limited resource.
- (3) More comprehensive design will be pursued involving all CFS works (civil, electric, mechanical, etc.) for all area systems.
- (4) The expected output is a realistic design, which meets mountainous site feature (in most case in Japan), with reasonable construction costs and schedules based on necessary CFS drawings.
- (5) These works will be combined into the TDP2 ILC design including a regional design alternative and cost estimate to be more reliable.