
Towards LCIOv2
Improving the EDM and the I/O

Frank Gaede, DESY
Linear Collider Software Workshop

DESY, July 4th, 2010

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

2

LCIO: persistency & event data model
joined DESY and SLAC project
- frst presented @ CHEP 2003

provides persistency (I/O) and
an event data model (EDM) to
ILC detector R&D community

features:
Object I/O (w/ pointer chasing)
schema evolution
compressed records
hierarchical data model
decoupled from I/O by interfaces
C++, Java (and Fortran)

 some generic user object I/O

LCIO is used by ILD, SID, Calice,
 EUPixelTelescope, LCTPC,...

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

3

LCIO in Marlin
LCIO provides the event
data model in Marlin:

transient==persistent
event data

software bus model
Marlin processors, eg
PandoraPFAProcessor,
LCFIVertexProcessor
programmed against LCIO

● effectively all existing LC
 software tools are programmed
 against LCIO
● need to evolve LCIO in a
 backward compatible way

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

4

LCIOv2 - envisaged features
LCIO provides a rather complete event data model and
has been used successfully in SID and ILD LOI mass
production and in various R&D testbeam programs

LCIOv2 needs to be backward compatible and should
provide some new features
direct access to events (done -> see this talk)

partial reading of events

splitting of events over fles

storing of (arbitrary) user classes

simplify using LCIO with ROOT
(ROOT macros, TTreeViewer, I/O (?) ,...)

improving the event data model
(1d,2d hits, tracks/trajectories)

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

5

partial reading & splitting of events

needed for performance and cost (disk space) issues:
read only objects of interest in analysis (PandoraPFOs)
store simulation and reconstruction output in separate fles

main obstacle: need pointer/reference mechanism across I/O
records and fles
not available in SIO now and can't use TRefs in ROOT

need index based pointers independent of I/O, e.g.:
long64 index = HASH(collName) << 32 | collIndex

experimental C++ version exists in ROOT I/O branch for
partial reading of events (not yet fle splitting)
need further testing & implementation in SIO (also Java)
need extension of LCIO::Reader interface

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

6

storing of arbitrary user classes

LCIO event data model rather complete – but also clear need
for storing user defned information
LCGenericObjects can store almost arbitrary data structures based on
ints, foats and doubles
fles can be read w/o any additional code (dictionary)
small performance penalty
extensively used in LCCD (conditions data) by testbeams

occasional user request for 'natively' storing arbitrary user
classes in LCIO
possible in principle with LCIO/SIO (not documented and somewhat
'discouraged') – would come 'for free' w/ ROOT I/O

IMHO: success of LCIO is to a large extend due to the
slightly restrictive defnition of the event data model i.e. the
interfaces between modules/processors

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

7

ROOT I/O for LCIO
user request to have closer link of LCIO to ROOT
use LCIO classes in ROOT macros (former GLD groups)
have fast interactive analysis with ROOT tree

investigate the optional use of ROOT I/O for LCIO
would provide 'missing features': direct access, partial reading and
splitting of events (and streaming of user classes)

created experimental branch in cvs (rio_v00-00)
create ROOT dictionary w/ help from ROOT team (A.Naumann)
implemented index based pointers for C++
needed some changes to LCIO classes: LCTCollection<T>, std::vector as
members, ,...
can create almost complete copies of LCIO DST in ROOT
no subcollections (pointers only) yet

streaming mode for Marlin under development

see: talks at ILD software working group meetings for details

still some issues to resolve (interface to Java !!)

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

8

 a ROOT dictionary for LCIO
LCIO now comes with a ROOT dictionary for all LCIO
classes (optional) - with this one can:
use LCIO classes in ROOT macros

write simple ROOT trees, e.g. std::vector<MCParticleImpl*>

use TTreeDraw for quick interactive analysis of LCObjects:
//---gamma conversions:

TCut isPhoton("MCParticlesSkimmed.getPDG()==22") ;

LCIO->Draw("MCParticlesSkimmed._endpoint[][0]:

 MCParticlesSkimmed._endpoint[][1]",isPhoton) ;

write complete LCIO events in one ROOT branch

see: $LCIO/examples/cpp/rootDict/README for details & help

-> we are interested in feedback from the users if
this provides already the requested features

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

9

Improving the LCIO event data model
suggested improvements to the event data model:

1D, 2D tracker hits
LCIO (Sim)TrackerHit is a 3D space point – whereas actual measurements
are either 1D (strip) or 2D (TPC) where the detector surface (line) provides
the additional geometry information

Track
currently Track has pointers to all TrackerHits and one set of (Helix)
parameters
generally one wants to have multiple fts for one set of hits, e.g. at the IP
or at the face of the calorimeter
Trajectory could be introduced as high level convenient view to these fts
currently not straight forward (though possible) to store kinks in LCIO

details are coupled to development in tracking code

hope to make progress at this meeting (LCIO meeting friday)

also user feedback welcome

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

10

LCIO release v01-51
improved EDM
renamed dEdx in (Sim)TrackerHit to EDep

added EDepError to Trackerhit

added error Matrix for charge and time meassurement to
TrackerPulse

new features
implemented real direct access to events (no fast skip)

old fles simply made 'direct accessible' on open()/close()

new ostream operators<<(...) in C++
cout << ((MCParticle*) c->getElementAt(i)) << endl ;

Java builds with Maven

improved CMake builds for developers

bug fxes...

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

11

Summary & Outlook
currently the LCIO team is working on 'LCIOv2' to further
improve LCIO and address the following feature requests:
direct access (done in v01-51)
partial reading and splitting over fles (partly done, experimental)
linking LCIO closer to ROOT for analysis (partly done w/ ROOT dict)
improving the event data model (ongoing – hope to make progress after
ILD WS)

other improvements not shown today are also discussed:
make interfaces more consistent and more convenient to use
better defne the suggested use of meta-data
provide LCIO fle browser (JAS)
...

make use of the 'spare time' in 2010 until preparation for the
DBD reports in 2012 will have to start

continuos user feedback is important and welcome !

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

12

additional material

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

13

direct access to LCIO events

direct access to LCIO events
needed:
overlay of random background events
physics analysis – reading of pre-
selection
so far available through fast skip or
creation of TOC on opening (slow)
→ introduced two additional records
LCIORandomAccess/LCIOIndex

records written at end of fle on close()
can append to fle
can add direct access to existing fle
if opened in append on writable fle system (not tape)

released in v01-51

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

14

improved Tracker Hit classes

TrackerPulse

added covariance (error)
matrix for charge and
time measurements

(Sim)TrackerHit

renamed dEdx to EDep –
deposited energy

dEdx methods are deprecated:
they still can be used but result
in a printed warning …

added EDep to TrackerHit
measurement error

released in v01-51

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

15

LCIO software design

event data model is strictly decoupled from persistency package
– currently SIO, but can be changed

user code only sees pure abstract interface (Reading) or LCIO
implementation classes (Writing)

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

16

LCIO – user extensions
LCIO defnes the event data model and provides
the persistency for it

however users want to extend existing classes
and persist their own classes

LCGenericObject provided by LCIO:
users can store 'arbitrary' data structures in
LCGenericObject w/o writing streamer code
performance not great

LCIO runtime extensions (C++)

extension of the object with arbitrary (even
non-LCObject) classes

bidirectional relations between LCObjects
one to one
one to many
many to many

no persistency
yet

 Fr
an

k
G
ae

de
,
D
ES

Y,
 L

C
So

ft
w
ar

e
W

S,
 D

ES
Y,
 J

ul
y

4,
20

10

17

SIO persistency
missing so far:
splitting of events over fles
direct access
user streamer code

could be implemented
rather easily, if needed

simple C++ persistency tool
developed at SLAC

provides some OO-features like
pointer chasing

user needs to write streamer
code (done in LCIO)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

