
John Marshall, 1

John Marshall,

University of Cambridge

ILD Workshop, DESY, July 5 2010

John Marshall, 2

Pandora Structure

Specify Geometry

Create Calo Hits

Create Tracks

Create MC Particles

Register User Content

Clustering Algorithm

Topological Association
Algorithms

Statistical Reclustering
Algorithm

Photon Recovery
Algorithm

Fragment Removal
Algorithms

Track-cluster Association
Algorithms

PFO Construction
Algorithm

Pandora

Algorithm
Manager

Calo Hit
Manager

Cluster
Manager

MC
Manager

Geometry
Helper

Pandora
Settings

Track
Manager

Particle
Flow

Object
Manager

Get Particle Flow Objects

User Application: Pandora Framework, treat
as “black box”:

Pandora Algorithms:

P
an

d
o

ra
 A

P
I

P
an

d
o

ra C
o

n
ten

t A
P

I

John Marshall, 3

Writing a Pandora Application

Pandora API

Pandora
Calo Hit
Manager

Cluster
Manager

Track
Manager

MC
Manager

Particle Flow
Object

Manager

User Application, e.g. MarlinPandora

PandoraApi::Track::Parameters parameters;

parameters.m_d0 = ...;

...

PandoraApi::Track::Create(pandora, parameters);

 To run Pandora, a user needs to write a small
application in their chosen software framework.

 This application uses the PandoraAPI to supply
Pandora with details of the detector geometry and
of the calo hits and tracks in each event.

 Pandora then builds its own simple objects.

 Construction of these objects is easy; the user
makes a Parameters class, fills the member
variables and then calls the API Create function.

 Example member variables for a track:
d0, z0, track state at start, track state at ECal, etc.

 All member variables must be specified, or an
exception will be thrown when Create is called.

 The user can provide this information in any
order, then call the API ProcessEvent function.

 Finally, user calls the API GetParticleFlowObjects
function.

John Marshall, 4

e.g. Clustering Algorithm

Writing a Pandora Algorithm

Pandora
Calo Hit
Manager

Cluster
Manager

Track
Manager

MC
Manager

Particle
Flow Object

Manager

Pandora Content API

PandoraContentApi::GetCurrentTrackList(...);

PandoraContentApi::GetCurrentOrderedCaloHitList(...);

...

PandoraContentApi::Cluster::Create(...);

 Pandora Managers are designed to store named lists of
their respective objects.

 These objects can be accessed by the Pandora
Algorithms, which perform the reconstruction.

 The algorithms interact with the Managers in a
controlled way, via the PandoraContentAPI, and the
Managers perform the memory management.

 The algorithms should therefore contain exclusively
physics-driven code, alongside the following typical
usages of the PandoraContentAPI:

• Create new clusters and particle flow objects
• Modify clusters (adding hits, merging, deleting)
• Access the current lists of Pandora objects
• Save new lists of clusters, calo hits or tracks
• Run a daughter algorithm, etc...

 Static helper functions are provided to perform tasks
that are useful to multiple algorithms, and the Pandora
algorithms are configured via xml and can be swapped
in/out without recompiling.

John Marshall, 5

Pandora Plugins
 PandoraPFANew has been designed to make it easy for people to get involved and try out new ideas. Users can therefore

register and use their own content, including:

 Particle identification helper functions,

 Hadronic and electromagnetic energy correction helper functions,

 Particle flow algorithms, allowing for a completely different reconstruction.

• Pandora API is used to pass addresses of
helper functions and algorithm
“factories” to Pandora managers.

• This gives Pandora the ability to call the
static helper functions and to create and
run instances of the user algorithm.

Pandora

Plugin
Manager

Algorithm
Manager

P
an

d
o

ra
 A

P
ICustom algorithms

Particle id functions

Energy correction
functions

User Application:

 Existing Pandora algorithms and functions have been written to ensure they have no dependencies and that they are
(subject to changing steering parameters) largely detector independent, but this need not apply to custom content.

 This provides an opportunity to bring together many independent analyses within Pandora.

John Marshall, 6

Pandora Plugins
1. Implement particle id function:

static bool MyClass::MyParticleIdFunction(const pandora::Cluster *const pCluster);

2. Register function with Pandora under a specific name:
PandoraApi::RegisterParticleIdFunction(pandora, “MyFunctionName”, &MyClass::MyParticleIdFunction);

3. In PandoraSettings xml file, assign named function to one of a number of particle id ‘slots’:
PhotonFast, PhotonFull, ElectronFast, ElectronFull, MuonFast, MuonFull, ...

4. Algorithms call the helper functions, e.g. ParticleIdHelper::IsMuonFast(pCluster);

Particle Identification Functions

Energy Correction Functions

1. Implement energy correction function:
static void MyClass::MyEnergyCorrection(const pandora::Cluster *const pCluster, float &correctedEnergy);

2. Register function with Pandora under a specific name:
PandoraApi::RegisterEnergyCorrectionFunction(pandora, “MyFunctionName”, HADRONIC/ELECTROMAGNETIC,

&MyClass::MyEnergyCorrection);

3. In PandoraSettings xml file, specify ordered list of electromagnetic and hadronic correction functions.

4. Algorithms query Pandora Clusters for CorrectedHadronicEnergy() or CorrectedElectromagneticEnergy().

Currently available: Fast photon and electron id, reproducing old Pandora performance. New fast muon id function.

Currently available: functions to remove effects of calo hits with anomalously high energies, coil energy loss correction.

John Marshall, 7

Pandora Plugins

1. Copy and rename Pandora template algorithm class, then register new algorithm with Pandora:
PandoraApi::RegisterAlgorithmFactory(pandora, “MyAlgorithmName”, new MyAlgorithm::Factory);

2. Add algorithm to the PandoraSettings.xml file; it will then be called automatically for each event.

3. Algorithm reads existing photon cluster collection, then uses unique identifiers in Pandora CaloHits to simply
recreate the photon clusters within the Pandora framework.

4. Algorithm uses simple API call to save new photon clusters in a named cluster list, and to remove them from
subsequent reconstruction.

5. ClusterPreparation algorithm configured to add photon clusters back into reconstruction when desired; they
are probably best added at Pfo construction stage.

6. Should observe an immediate improvement in jet energy resolution.

Particle Flow Algorithms

 Creating a custom algorithm allows access to the full range of functions in the PandoraContentAPI. This allows
implementation of almost any conceivable particle flow algorithm.

 Can write new algorithms to complement existing Pandora reconstruction, or can write simple ‘wrapper’ algorithms to
bring results of other packages right to heart of Pandora reconstruction.

 For example, can very simply (~50 lines of code) use output from e.g. GARLIC to replace Pandora photon-clustering stage:

John Marshall, 8

Algorithm Tuning
 The Pandora framework is designed to make algorithm tuning painless. Algorithms can be swapped in/out without

recompiling and there are no hard-coded numbers; all parameters are configurable.

 The parameters are divided between the user application and the PandoraPFANew library:

 User application parameters are those required to isolate PandoraPFANew from specific detector and software
framework details. These include calibration constants and specific track quality cuts, etc.

 PandoraSettings.xml file specifies which algorithms are to be used each event and configures these algorithms. It
can override any of the 800 default parameter values and is independent of user application.

 The majority of parameters in Pandora take default values, compiled into the code. Most parameters are member variables
of the algorithms and are commented in the algorithm header files:
 float m_tanConeAngleECal; ///< ECal tan cone angle used to calculate cone approach distance

 Each algorithm has a ReadSettings method, called at startup. In this method, parameters are assigned their default values
and the relevant section of the xml file is scanned to see if values have been overridden:
 m_tanConeAngleECal = 0.3f;

PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=,

XmlHelper::ReadValue(xmlHandle, "TanConeAngleECal", m_tanConeAngleECal));

 The xml helper will look for the key shown below. The original value will be unchanged if this key isn’t present:
 <TanConeAngleECal>0.2</TanConeAngleECal>

 In addition to algorithm settings, there are also static members for Helper classes, and a few "global" settings which are
members of the PandoraSettings singleton.

John Marshall, 9

Algorithm Tuning

 Use MC samples of approximately 10,000 Z uds generated
with the Z decaying at rest, with Ez = 91.2, 200, 360 & 500GeV.

 Performance is quoted in terms of rms90, defined as rms in
smallest range of reconstructed energy containing 90% of
events. A cut on polar angle is applied to avoid barrel/endcap
overlap region: |cos | < 0.7

 Total energy is reconstructed and jet energy resolution
obtained by dividing total energy resolution by 2.

rms90(Ej) / Ej = 3.32 ± 0.04

Ej = 250GeV

 Algorithms specified within the <pandora></pandora> tags in the PandoraSettings.xml file will be called for each event.
The algorithms are called in the order they are specified:

 <algorithm type = “Clustering”/>

 For simple algorithms, using default parameter values, this simple configuration is sufficient. However, most Pandora
algorithms are more complex and many different settings are specified for each algorithm, including nested “daughters”.

 The parent algorithms dictate the xml configuration details that must be provided for any daughters. Algorithms can ask
for named lists of daughter algorithms, or for individually labeled daughter algorithms. This offers much flexibility, and is
discussed further at: http://www.hep.phy.cam.ac.uk/twiki/bin/view/Main/PandoraPFAQuestions

 So far, tuning has aimed to optimise the jet energy resolution, obtained as described below:

John Marshall, 10

Summary

 The first release of PandoraPFANew (and its associated MarlinPandora processor) is now available. This is a
complete replacement for the old version of Pandora and all users are encouraged to upgrade.

 The PandoraPFANew framework offers a great deal of flexibility for investigating new ideas and, in
particular, allows for custom energy corrections, particle id and implementation of custom algorithms.

 ‘Wrapper’ algorithms can very quickly bring results from other packages right to heart of Pandora
reconstruction.

 The existing particle identification and energy correction functions are quite simplistic and are only
placeholders. We are looking for new ideas, so please get in touch if you’d like to be involved...

 If there is sufficient interest, we are thinking about holding a Pandora workshop in Cambridge in
September. Would aim to provide a more detailed description of how Pandora works and discuss all you
need to know in order to develop within the Pandora framework. Hands-on sessions; discussions
concerning future development, etc.

