

Orsay Micro Electronic Group Associated

Second generation ASICs for EUDET

mega

- Add auto-trigger, analog storage, digitization and token-ring readout !!!
- Include power pulsing : <1 % duty cycle
- Optimize commonalities within EUDET (readout, DAQ...)
- Dedicated run produced in march 2010
 - 25 wafers received in june (<1€/ch)
 - Plastic packaging in the US

FLC_PHY3 (2003)

AHCAL SiPM 36 ch 30 mm²

ECAL Si 64 ch. 70 mm²

30 sep 2010 CdLT: EUDET annual meeting

HaRDROC: ILC DHCAL readout

Omega

- Hadronic Rpc Detector Read Out Chip
 - 64 inputs, preamp + shaper+ 3 discris
 - Full power pulsing $=> 7 \mu W/ch$
 - Chip embedded in detector
 - in beam in 2008-2009
 - 10 000 chips produced
 - collab. LLR, IPNL, LAPP, LAL/OMEGA

 Readout and DAQ2 validated with µMegas and RPC m² detectors

Towards an ILC technological prototype

30 sep 2010 CdLT: EUDET annual meeting

Institut National de Physique Nucléaire

POWER PULSING is ON and working in 3-Tesla field

Cycle of 2 ms power put

First powerpulsed detector

(100 Hz rather than cools)

Efficiency is almost the same (2% less) but this probably due to the acquisition starting time which is to be fine-tuned.

30 sep 2010

HARDROC2B: first tests

- ~9000 chips to be tested with a dedicated testbench in IPNL Lyon
- ~1 000 chips tested right now with a yield of 80%

30 sep 2010

MICROROC status

- MICROROC : MICROMEGAS Read Out Chip
 - Same as HARDROC but with charge preamp input stage + HV protection [R. Gaglione] and slower shaping + 4bit DAC/channel [N. Seguin]
 - Preamp optimized for Cd=80 pF, noise = 0.2 fC. Cf=0.4pF Rf=5M
 - Maximum input charge: 500 fC
 - Bi-gain shaper (G1-G4), peaking tunable
 50-200 ns (2 bits)
 - 3 thresholds, Lowest threshold ~2 fC
 - Pin to pin compatible with HR2
 - Chip sent in MPW june 10, received sequence very promising preliminary results

SPIROC: ILC AHCAL & ECAL readout

mega

- SPIROC : Silicon Photomultiplier Integrated Readout Chip
 - 36 channels
 - Internal 12 bit ADC/TDC
 - Charge measurement (0-300 pC)
 - Time measurement (< 1 ns)
 - Autotrigger on MIP or spe (150 fC)
 - Sparsified readout compatible with EUDET 2nd generation DAQ
 - Pulsed power -> 25 μW/ch
 - Also External users (PET, hodoscopes, μ-imaging... (@ Aachen, Napoli, Pisa, Roma...)

Performance

30 sep 2010

Single-Photon Peaks I

SPIROC status

- 50 chips SPIROC2 produced in june 2008 to equip AHCAL and ECAL EUDET modules
 - EUDET milestone
 - Package TQFP208
 - Difficult slow control loading
- Measurements slowly coming in: complex chip
 - Collab LAL, DESY, Heidelberg
- Full production run: march 2010
- 4000 chips SPIROCO (analog) bare die
- 1000 chips SPIROC2A in TQFP208
 - Identical to SPIROC2 with slow control fixed
- 200 chips SPIROC2B in TQFP208
 - Pin to pin compatible with SP2
 - Individual gain adjustment
 - Better input DAC
- New alternative FE design in collaboration with Heidelberg
- Many external applications!

SPIROC2B: new Input DAC

mega

- Input DAC to optimize SiPM bias voltage
- 8-bit DAC, 5V range, LSB=20mV
- 36 DAC (one per channel)
- Ultra low power (<1µW): no power pulsing
- Can sink 10 µA leakage current
- Improved version : new spatial arrangement for a better matching
- Linearity: ± 1%
- DAC uniformity between the 36 channels: ~3%

SPIROC2B: new 10-bit DAC linearity

- Residuals: ±1.5mV (better than ±1 LSB)
- Slope 1.3mV/DAC unit

Active target with MPPC readout

Tohoku Univ + KEK

- Characteristics
 - Fast time response
 - Work in a high beam intensity
 - Large gain $(10^5 \sim 10^6)$
 - Possible to detect 1 photon
 - Operation in the magnetic field
 - Combination of Imaging and Spectrometer
 - Trigger possibility

Test with small prototype

ビーム照射部

Scintillation

Fiber

PEBS

RTWH Aachen

PEBS is a project in Research & Development phase
 The purpose of the experiment is a precision
 measurement of the electron & positron cosmic ray
 flux in the energy range from 1 to 2000 GeV.

30 sep 2010

Shinshu Univ

Single-sided slabs to fit into EUDET structure

~45x5 mm2 strips, MPPC readout

PCB: Similar requirements to AHCAL → work with DESY MPPC mounting/readout Gain monitoring system

SKIROC: ECAL readout

- SKIROC2 : Silicon Kalorimeter Integrated Read-Out Chip
 - 64 channels, 70 mm²
 - Very large dynamic range: HG for 0.5-500 MIP, LG for 500-3000 Mip
 - Collab. with LLR
 - Testability at wafer level
- Front End boards crucial element
 - Collab with Korea

30 sep 2010

JRA3 summary and perspective

- Nice infrastructure essential to prove ILC calo feasibility
 - ECAL, HCAL: Mechanical infrastructure + new sensors
 - Light calibration system
 - Embedded electronics with 2nd generation DAQ
 - First power pulsing operation at system level
 - FCAL: new sensors and readout electronics
- All milestones completed, good starting point for AIDA
 - Large scale mechanical structure
 - Thousands of readout chips
 - 2nd generation DAQ infrastructure
 - Lots of important tests ahead: Power pulsing, coherent noise, power dissipation, timing, system aspects, DAQ...
 - Small Testbeam program starting

30 sep 2010

Test beam with technological prototype

- Data rate (Spiroc/Skiroc) : naive estimate
 - Volume: 36ch*16sca*50bits=30 kbit/chip
 - Conversion time : $16*100 \mu s = 1.6 ms$
 - Readout speed 5 MHz (could be increased to 10-20 MHz)
 - 8 chips/DIF line (one FEV only)
 - Total: 1.5ms + 30000*200ns*8 = 50 ms/16 events = 3 ms/evt => 300
 Hz during spill

- Overall readout rate
 - « Add » 1-10% power pulsing : 3-30 Hz effective rate
 - Pessimistic as assuming all chips full
 - interesting tests to be done
- Note: readout electronics designed for ILC low-occupancy, low rate detector #Testbeam!!

30 sep 2010

Read out: token ring

- Omega
- Readout architecture common to all calorimeters
- Minimize data lines & power

Data bus

30 sep 2010 CdLT: EUDET annual meeting

21