Tungsten HCAL in AIDA - overview and DESY part

Felix Sefkow

CALICE & EUDET Meeting DESY, June 5-6, 2010

Goals

- Validate shower simulations for tungsten
 - stronger role of neutrons than in iron
 - to be done with scintillator and gaseous devices
- Gain engineering experience with tungsten
- Develop electronics integration solution for a very compact PFLOW HCAL
- Study timing issues
 - physics: signals from delayed de-excitations
 - algorithms: tag neutron signals
 - operation: time stamping for background rejection

AIDA tungsten HCAL Felix Sefkow DESY,, June 6, 2010 2

Synergies

- 2nd generation prototype has integrated readout ASICs and LED system - and time measurement
- electronics development is the same, but tighter compactness requirements
- Prototype roadmap:
 - 2010: 1st HBU
 - 2011: full layer (2000 ch) 800
 - 2012: minical (2000 ch)
 - later: wedge
- Tungsten HCAL
 - 40 layers, 72x72 cm2
 - 23'000 ch

Calorimeter for II

CALICE planning

Felix Sefkow SiD Meeting, Argonne, June 3-5, 2010

Synergies

- 2nd generation prototype has integrated readout ASICs and LED system - and time measurement
- electronics development is the same, but tighter compactness requirements
- Prototype roadmap:
 - 2010: 1st HBU
 - 2011: full layer (2000 ch) 800
 - 2012: minical (2000 ch)
 - later: wedge
- Tungsten HCAL
 - 40 layers, 72x72 cm2
 - 23'000 ch

Overview

- At the proposal stage
- CERN: tungsten engineering and optical test stand
- MPI-M: tile integration tests and SiPM development
- LAL: 3rd generation ASICs
- Heidelberg: fast timing electronics
- DESY: compact interfaces and integration
- Wuppertal: LED system development and tests
- Prague: adaptive power supplies
- Bergen: adaptive p/s, test stand and simulations
- Briefly review today and update document for internal planning

DESY: interfaces

Left

Central HBU

- see talk by Mathias Reinecke
- most components already unerway
- services, cabling and cooling comes on top

CALIB2 POWER2

concept dev., circuit design

> schematic entry

> > Layout

Production

NIU

NIU

NIU

HBU2

Right

(354.92, 86.5)

Back-up slides

High energy

- Particle flow also a promising option for CLIC energies
- Leakage expected to limit PFLOW performance
 - need 1 λ ECAL + 7 λ HCAL
- Tungsten absorber costcompetitive with larger coil - and less risky
- Test beam validation with scintillator and gas detectors
- More neutrons:

Calorimeter for IL

- different model systematics
- timing measurements

Calorimeter for IL

Tungsten beam test plans

- start at CERN PS: Sep 2010 muons, Nov 2010 hadrons
- 30 layers initially, more 2011
- scintillator layers modified (finer pitch), re-commissioned
- begin with static set-up, integrate into movable stage later
- move to SPS ~ end 2011
- integrate few layers of gaseous detectors parasitically, full test later
- future: test with scintillator and 2nd generation time-resolving electronics

neutron timing, time stamping

