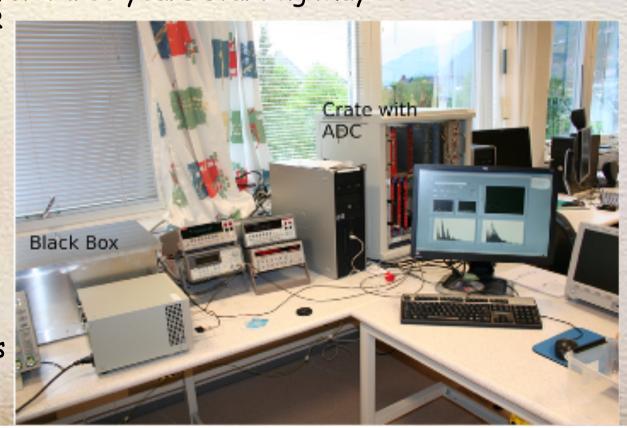


G. Eigen, U. Bergen

AIDA Plans for WP9 in Bergen

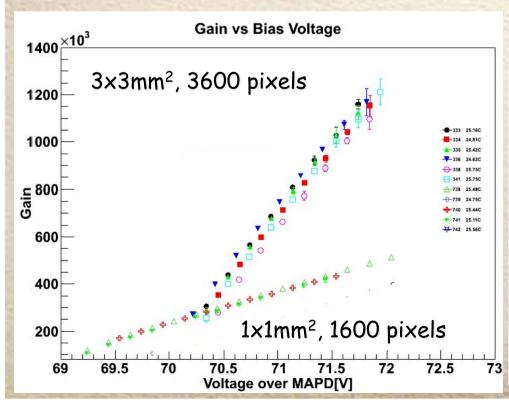
© In an HCAL for ILD we have ~10⁶ channels → corrections due to temperature changes (ΔT) need to be done automatically online

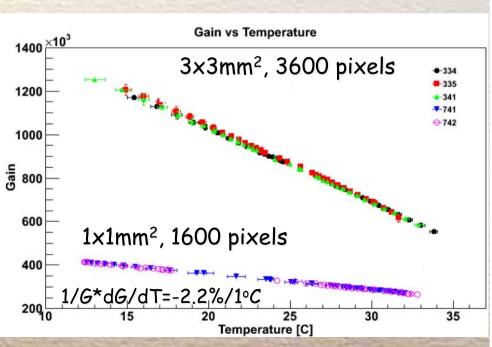

ullet Collaborate with Prague on development and testing of a controller that automates corrections due to ΔT by adjusting the overvoltage ΔV

• We will hire a postdoc for three years starting May 2011

7 months EU, rest NFR

• We try to get master students in the fall


- In Bergen, we have a well-equipped lab
- We have a setup for testing SiPMs
- We have MPPCs, SiPMs tiles



AIDA Plans for WP9 in Bergen

- The gain of SiPMs depends on overvoltage ΔV and temperature T $G = f(\Delta V, T) \quad \text{(both dependences are linear over a wide range)}$
- \blacksquare By changing ΔV as a function of T we can keep the gain constant
- We have measured V and T dependence of gain in Bergen for MPPCs

AIDA Plans for WP9 in Bergen

- Perform initial measurements to determine algorithm (Bergen)
 - SiPM gain versus overvoltage
 - SiPM gain versus temperature
 - \bullet Parameterize dependences by simple algorithms for $\Delta V=f_V(T)$
- Build controller (Prague)
 - → buy power supply, temperature sensors
- Test controller with various SiPMs (Bergen, Prague)
 - > need new SiPMs
- Issues
 - Where do we need to measure the temperature?
 - How many sensors?
 - How do we handle multiple corrections in one power supply? (power supply feeds several SiPMs which may have different V_{break} and ΔV dependence)