IDAG studies: portability of calibration coefficients

Lars Weuste & Katja Seidel MPI for Physics & Excellence Cluster "Universe" Munich, Germany

CALICE ECAL/AHCAL - EUDET electronics and DAQ - AIDA 5th/6th July 2010 DESY - Hamburg

The question(s) from the IDAG board

How can you create and maintain the calibration for 8 million channels?

- Answer: (see CAN-018 for details)
 - 1. calibrate module before installing
 - 2. transport constants to new conditions
 - 3. use MIP-tracks to maintain calibration
- Now: "IDAG reloaded" redo presented solution
 with new calibration
 - **O** without time pressure

IDAG reloaded:

CERN 2007 Data

3 Calibration Sets:

- 1. Cern 2007: "001": reference
- 2. FNAL 2008: "002"
- 3. FNAL 2008: "004": large ΔU to Cern

Transport calibration constants FNAL \rightarrow Cern \Rightarrow see talk by Nils Feege

Check resolution of reconstructed energy

- Use MIP Tracker on data (see CAN-022) ⇒ module wise energy correction/calibration factors (per run)
- \Rightarrow Use correction factors on reconstructed energy (per run)

MIP energy deposition: Langau

- Energy deposition of MIP according to Landau convoluted Gauss distribution ("Langau")
- MPV used for original calibration
- use for correction/calibration after transport too
- Mean/MPV dependent on angle

1 EP = truncated mean of 77GeV μ

1 EP = truncated mean of 77GeV μ

• Source:

Nuclear Instruments and Methods in Physics Research A 343 (1994), p. 463-469, table 2, 1CTR

1 EP = truncated mean of 77GeV μ fit to guide the eye

- Source:
 - Nuclear Instruments and Methods in Physics Research A 343 (1994), p. 463-469, table 2, 1CTR
- expected change in MPV for 32→80 GeV:

1 EP = truncated mean of 77GeV μ fit to guide the eye

- Source:
 - Nuclear Instruments and Methods in Physics Research A 343 (1994), p. 463-469, table 2, 1CTR
- expected change in MPV for 32→80 GeV:

$$\Delta = \frac{0.866 - 0.862}{0.866} \approx 0,46\%$$

1 EP = truncated mean of 77GeV μ 3-4% in CAN-018 valid for mean

- Source:
 - Nuclear Instruments and Methods in Physics Research A 343 (1994), p. 463-469, table 2, 1CTR
- expected change in MPV for 32→80 GeV:

$$\Delta = \frac{0.866 - 0.862}{0.866}$$

Source:

Nuclear Instruments and Methods in Physics Research A 343 (1994), p. 463-469, table 2, 1CTR

expected change in MPV for $32 \rightarrow 80 \text{ GeV}$:

$$\Delta = \frac{0.866 - 0.862}{0.866}$$

Described in detail in CAN-022

- Using isolated hits to reject cells hit by multiple particles
- ["Next Neighbour" algorithm

- Described in detail in CAN-022
- Using isolated hits to reject cells hit by multiple particles
- "Next Neighbour" algorithm

Described in detail in CAN-022

- Using isolated hits to reject cells hit by multiple particles
- "Next Neighbour" algorithm

Described in detail in CAN-022

- Using isolated hits to reject cells hit by multiple particles
- "Next Neighbour" algorithm

1. Search for MIP tracks

Search for MIP tracks
 Create only one histogram per layer

- 1. Search for MIP tracks
- 2. Create only one histogram per layer
- 3. Fit with langau

- 1. Search for MIP tracks
- 2. Create only one histogram per layer
- 3. Fit with langau
- Layerwise calibration factors

Lars Weuste (weuste@mpp.mpg.de) - MPP

Layerwise calibration constants from TT run

- CERN (001):
 - Should be flat
 - up to 10% overshoot
 tracks inclined after shower
 - → higher E_{dep}
- FNAL (002 & 004):
 - large variations
 - OO2: largest variations

Lars Weuste (weuste@mpp.mpg.de) - MPP CALICE ECAL/AHCAL Meeting - Desy - July 2010

Layerwise calibration constants from μ run

- CERN (001):
 - Flat distribution
 - ca 2% offset
 ⇒ diff Langau-Fit?
- FNAL (002 & 004):
 - still large variations

Challenges for obtaining calibration factors

Resolution of reconstructed energy: w/o correction

Resolution of reconstructed energy: w/ correction

Comparison to IDAG (CAN-018)

IDAG

IDAG reloaded

Comparison to IDAG (CAN-018)

IDAG

IDAG reloaded

Comparison to IDAG (CAN-018)

IDAG

IDAG reloaded

Excellence Clust

70

60

80

beam Energy [GeV]

 $(0.75 \pm 1.39)\%$

 $0 \pm 0.3)\%$

Conclusion

- Transport of calibration constants to new conditions possible, but not perfect
- Layerwise created correction/calibration set using MIP tracking possible
 - can correct constant shift in energy
 - improves linearity
 - better constant term in resolution than original IDAG
 - limited by correct langau fit
 - need to improve angle correction for MIP tracks
 - still need to understand what happend at FNAL 1 (002)

Langau angular dependence

- \bullet simulation of 5 mio μ
- angular spread
- start: center of AHCal
- expected: $1/\cos \theta$
- observed: $1.1/\cos \Theta$
- not yet implemented! TODO[®]

