

Calibration Sets for IDAG Studies

Nils Feege University of Hamburg

HCAL Main Meeting, DESY, 5 July 2010

Outline

The IDAG question: transport FNAL muon calibration ("testbeam run") to CERN operation conditions ("collider run") → possible? impact on energy resolution?

- T + U Correction: IDAG Status and Changes
- FNAL: T + U Dependence of Muon Calibration
- Shift FNAL Calibration to CERN Conditions
- Summary & Outlook

IDAG Status

• $\Delta T = 4.5 \text{ K}$

- IDAG report: Remaining difference due to different muon energy
 - → **not valid!** (would explain shift of mean, not of MPV)

relative difference	mean	sigma
T + U correction	4.2%	7.8%

IDAG Reloaded

	IDAG (2009)	IDAG reloaded (now)
Mip calibration	chi ² fit	likelihood fit
T + U correction	each channel: individual slope	detector average
	absolute slopes (CERN)	relative slopes (CERN)

IDAG Reloaded

- Shift FNAL calibration to *T*, *U* of CERN muon calibration using
 - I/A dA/dT = -3.7 %/K
 - I/A dA/dU = 5.6 %/100mV

relative difference (corrected)	mean	sigma
FNAL 0508/2	-9.7%	15%
FNAL 0508/3	-9.5%	6.5%
FNAL 0908	-8.9%	6.6%

→ Step back and re-evaluate assumptions / simplifications!

T-Dependence at **FNAL**

- Mip calibration: FNAL 0509, FNAL 0908
 - $\Delta U = 0 \vee$
 - $\Delta T = 1.6 \text{ K} \text{ (mean)}$
- each channel:

$$\frac{1}{A}\frac{dA}{dT} = 2 \cdot \frac{A_1 - A_2}{A_1 + A_2} \cdot \frac{1}{T_1 - T_2}$$

- half-module means:
 - strong fluctuation
 - outliers

Outlier Rejection

module 16-B: positive slope

module 29-A: strongly negative slope

- cut outliers: include only channels with -0.15 I/K < I/A dA/dT < 0.05 I/K
- reduce # channels from 7433 to 7221 (3 %)

Average T-Dependence

0.05

correlation between average relative slopes and temperatures: 51%

- average relative slope: -2.4 %/K
- spread between modules (RMS): I.3 %/K

U-Dependence at FNAL

- Mip calibration: FNAL 0508/3, FNAL 0908
 - $\Delta U = 200 \text{ mV}$
 - $\Delta T = 3.4$ K (mean)
- shift FNAL 0908 to T(FNAL 0508/3) using I/A dA/dT = -2.4 %/K
- each channel:

$$\frac{1}{A}\frac{dA}{dU} = 2 \cdot \frac{A_1 - A_2}{A_1 + A_2} \cdot \frac{1}{U_1 - U_2}$$

- half-module means:
 - strong fluctuation
 - outliers

Outlier Rejection

- cut outliers: include only channels with -0.5 I/V < I/A dA/dU < I.0 I/K
- reduce # channels from 7427 to 7232 (3 %)

Average U-Dependence

	I/A dA/dT [%/K]	I/A dA/dU [%/100mV]	ratio [mV/K]
CERN	-3.7	5.6	-66
FNAL	-2.4	3.5	-69

- average relative slope: **3.5 %/I00mV**
- spread between modules (RMS): 0.9 %/100mV
- correlation between average relative slopes and temperatures: -40%

Transport FNAL → CERN

relative difference	mean	sigma
FNAL 0908	0.3%	6.4%

- $\Delta U \le 0.7 \text{ V}$ (main groups 0.2 V and 0.5 V) $\Delta T = 1 \text{ K}$
- use I/A dA/dT = -2.4 %/K and I/A dA/dU = 3.5 %/100mV
 - Mean looks good!
 - single modules up to 10% off

Transport FNAL → CERN

relative difference	mean	sigma
FNAL 0508/2	-1.2%	16%
FNAL 0508/3	-0.2%	6.3%
FNAL 0908	0.3%	6.4%

- use I/A dA/dT = -2.4 %/K and I/A dA/dU = 3.5 %/100mV
- best for subsequent studies:
 - FNAL 0508/3 (ΔT = 4.3 K)
 - FNAL 0908 ($\Delta U = 0.2 \vee \dots 0.5 \vee$)

Summary & Outlook

- Significant improvement in transporting mip calibration FNAL \rightarrow CERN using U + T correction w.r.t. IDAG report
 - use detector average: I/A dA/dT = -2.4 %/K
 - use detector average: I/A dA/dU = 3.5 %/100 mV
 - remaining shift < 0.5%, spread < 7%
- Next steps:
 - need to reduce spread
 - use half-module averages for U + T slopes
 - transport calibration using SiPM gain (G correction)
 - improve understanding of U + T correction using more muon data
 - dedicated *U*, *T* scans with high statistics at next test beam?
 - quantify correction impact on detector resolution

Backup Slides

Mip Calibration Sets

