Hadron Shower Analysis Alexander Kaplan, Universität Heidelberg

- Primary Track Finder
- Measurement of λ_{int}
- Event Selection
- EM Content of Hadron Showers
 - Hit Classification
 - Deep Analysis
- Summary & Conclusion

Primary Track Finder (PTF)

- Finds track of incoming particle up to shower starting point
- Developed by M. Chadeeva
- Accumulated average $A_i = \sum_{k=0}^{i} E_k / (i+1)$

- $((A_i + A_{i+1}) > 6.5 \text{MIP} \text{ AND } (nHits_i + nHits_{i+1}) > 8 \text{ MIP})$
- OR $(E_{i+1} > mipTreshold)$
- Slightly modified original PTF to use energy dependent MIP threshold - using energy sum in calorimeter

Performance of Primary Track Finder

- Performance depends on energy and physics list
- On average correlation is 91.7%
- For all physics lists and all energies:
 - at least 69% of events are within ±1 layer and at least 79% are within ±2 layers compared with true MC

Measurement of λ_{int}

	$\lambda_{int}^{\pi} \; [\mathrm{mm}]$	Δ_{stat}	Δ_{sys}	104
DATA	282	2	2	
FTF_BIC	286	2	2	
FTFP_BERT_TRV	284	2	2	10 ³
QGS_BIC	288	2	2	
QGSP_BERT	286	2	2	
QGSP_BIC	283	2	2	
QGSP_FTFP_BERT	286	2	2	10 ²
LHEP	247	2	2	0 200 400 600 800 1000
		'		z [mm]

- λ_{int} can be extracted directly from fit to distribution of shower starting layer
- Good agreement within uncertainty for all physics lists but LHEP (has different σ)

Event Selection

- Requirement: Shower start in 10 layers after the first HCAL layer
- Require Track in the ECAL
- Muons and double particles are rejected

Event Selection

- Requirement: Shower start in 10 layers after the first HCAL layer
- Require Track in the ECAL
- Muons and double particles are rejected

The EM Component in Hadron Showers

- where does EM Component come from?
- $\pi^0 \rightarrow \gamma \gamma$ (98.8%) and $\pi^0 \rightarrow e^+ e^- \gamma$ (1.2%)

•
$$\eta \rightarrow \gamma \gamma$$
 (39.3%), $\eta \rightarrow 3 \pi^{0}$ (32.6%),
 $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ (22.7%) and $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ (4.6%)

The EM Component in Hadron Showers

- ways to determine:
 - MC: save energy of all π^0 and all γ from η decay
 - From energy density in calorimeter cells
 - Clustering Algorithm: Deep Analysis by V. Morgunov

Hit Classification

- EM component of hadron shower has characteristically higher energy density
- Count hits above 3.7 mip to be EM-like
- Observable $E_{hits > 3.7 mip}$ / E_{total} related to EM fraction
- Relatively high correlation at high energies, very low correlation at low energies

Hit Classification

- above 35 GeV all other physics lists are equal
- below 20 GeV differences between the BIC models and the BERT model become visible

The Deep Analysis Algorithm

- Developed by V. Morgunov in 2004, later ported to Marlin C++ framework
- Ad-hoc clustering algorithm based on analog energy information
- Allows to study composition of hadronic showers in highly granular calorimeters
- Two Steps:
 - separation of EM-, hadronic- and track-like hits based on hit energy
 - clustering, joining of clusters in 3D

10

Deep Analysis Performance

- At 80 GeV: Correlation ~ 83%, uncertainty per event: ~17%
- For all energies: uncertainty on the mean value of EM energy smaller than 4.6%

EM fraction from Deep Analysis

- All physics list predict a too high f_{EM}
- Above 25 GeV f_{EM} for DATA seems to be constant (can be effect of clustering)
- Overall FTF_BIC is closest to DATA (within 10%)
- Differences between BIC and BERT models visible. BERT are all equal above 35 GeV, BIC are equal for lower enegies and start to differ at higher energies.

Summary & Conclusion

- Checked λ_{int} for π⁻ on Fe: good agreement between all physics lists using same σ - LHEP differs
- Mokka Plugin developed to extract true MC EM fraction
- Two variables related to the EM fraction: all MC models predict to high EM component
 →either EM component is more dense in MC models or EM fraction is really higher
- Overall FTF_BIC performs best in comparison with data

13