Analysis of Performance of Garlic in Different ECAL Models

AMJAD LLR, Ecole Polytechnique, Palaiseau 05/07/2010

Different ECAL models for ILD

- To check the performance of GARLIC.
- Four models with different number of layers and different absorber thicknesses But keeping the total Detector thickness almost same.
- Steering files for standard GARLIC need to be changed depending on the different geometry of Each New Model.

MODEL {mm}	Layers	Thickness {mm}	Total Thickness {mm}
A {79.8}	20 X	2.10	= 42.0
	9 X	4.20	= 37.8
B{81.0}	15 X	3.0	= 45.0
	6 X	6.0	= 36.0
C{81.0}	11 X	3.0	= 33.0
	8 X	6.0	= 48.0
D{78.0}	9 X	2.0	= 18.0
	10 X	6.0	= 60.0

Garlic Parameter to be changed

- Number of Layers.
- Number of Hits

Model	N Layers	N Hits
Α	12	5
В	8	4
С	8	4
D	10	4

- Taking into account that total thickness remains almost same, the criteria for Minimum number of hits and minimum number of layers for searching a seed and its validation is changed.
- There parameters come into affect along side the new calibration Constants.

Re-parametrization of GARLIC

- New Calibration Constants are calculated by fitting the linearity graphs between 0 and 10.
- At relative higher energies
- Performance of these four different models was checked in two ways.
 - Clustered Hits
 - _ Unclustered Hits
- In the second method, energy reconstruction is done in the whole ECAL, taking into account all the hits which GARLIC may reject for its clustering depending upon its clustering criteria.

X- and Y-Axis show the Energy of Incident Particles and Reconstructed Energy respectively.

Efficiency of GARLIC to find at least one Photon Cluster with new Garlic Parameters

Energy Weighted Efficiency for Photon {75% of Total Reconstructed Energy}

Efficiency of Garlic for Clustering the Total hits in ECAL.

Resolution of the different ECAL Models.

Efficiency of Garlic to Find at least One Cluster in Charged Pion Events

Incident Pion Energy

Energy Weighted Efficiency (5 % of Incident Energy)

Incident Pion Energy

Future Work Plans

- To study the performance of Garlic for Pi-o events for different ECAL Models to check its ability of separating very close photons.
- · Analyzing the Garlic Performance in Jet Events rather then single particle events.
- · Same studies to be carried out using different silicon thickness.

BACK UP

Possible reasons for Finding a Photon {Early Interaction of Pion in ECAL}

How Garlic Works

- Pre-Clustering, seed finding, and seed validation.
- Seed searching is done in a minimum number of layers, default is 12. {12 * 2.1 = 25.2 mm of absorber thickness.}
- For seed validation, the criteria includes number of least hits,
 Minimum energy.
- Having the new Models with different number of layers and a different distribution of absorber thickness, these parameters need to be modified.

Residual Energy

CLUSTERED Resolution

