

ILD vertex detector: VXD Integration

ILD inner region integration meeting, LAL, 2010 June 30

J.Baudot, for the IPHC group baudot@in2p3.fr

- **x** Overview
- **x** Mechanics
- **x** Cooling
- **x** Cabling
- **x** Material budget

Overview

- Mechanics
- Cooling
- Cabling
- Material budget

Two options for geometry

Double sided ladder

- **x** Ladder is equipped with two layers of sensors
 - → Material budget [LOI target) 0.16% X0
- x 3 ladders

Single sided ladder

- **x** Ladder is equipped with one layer of sensor
 - → Material budget (LOI target) 0.11% X0
- **x** 5 ladders

Sensor options

CMOS pixel sensors

- **★** Power dissipation ~100mW/cm²
 - → Full detectorL O(1) KW while active
 - → Factor 1/50(100) for average
- **x** Servicing required
 - **→** ?
- X

CCDs

- **x** FinePixelCCD, ISIS
- ✗ CCD to be kept at low temp Power dissipation ? mW/cm²
- **x** Servicing required

DEPFET sensors

- **x** Power dissipation ? mW/cm²
- **x** Servicing required

Ladder prototype

- **x** Bristol U. DESY, IPHC, Oxford U.
- **x** Running from 2009 to 2012
- ✗ Double sided ladder with 0.3% X0 goal
- Focus on CMOS sensors
 BUT should accommodate other technologies

SERWIETE project

- x IPHC, IKFrankfurt, IMEC Leuven
 - → EU-FP7, Hadron Physics 2 project
- Embedding the sensor inside kapton & metal layers
 - → Benefit from ultimate CMOS thickness (20-30 μ m)
 - \rightarrow Allow very thin metal traces down to 1µm
 - → Material budget for 1 module O(0.1) % X0

ILD-VXD integration, 2010, June 30

Numbers

	radius [mm]		ladder length [mm]		read-out time $[\mu s]$	
geometry	VTX-SL	VTX-DL	VTX-SL	VTX-DL	VTX-SL	VTX-DL
layer 1	15.0	16.0/18.0	125.0	125.0	25 - 50	25 - 50
layer 2	26.0	37.0/39.0	250.0	250.0	50 - 100	100-200
layer 3	37.0	58.0/60.0	250.0	250.0	100-200	100-200
layer 4	48.0		250.0		100-200	
layer 5	60.0		250.0		100-200	

- **x** ∼100 ladders in total
- **x** 300-500 Mpixels

ILD-VXD integration, 2010, June 30 -

Overview

- Mechanics
- Cooling
- Cabling
- Material budget

ILD-VXD integration, 2010, June 30-

Mokka vs Mecha. model

🕒 Mokka (VXD03)

- Simplistic double-sided ladder
 = 2xsingle-sided ladder
 BUT radiation length match LOI target
- Cryostat larger R(+10mm) & z (+10mm)/ mecha. model

Mechanical model

- **x** Miss ladder fixtures on support
 - ➔ Support z is -20mm / Mokka
- **x** Miss kapton cables from ladders to pipe
- x Support radius lower (-5mm) / Mokka

Layer support

- **x** 1st layer is mounted on the beam pipe
- **x** 2nd & 3rd layers mounted on the Beryllium support
- **x** Beryllium support clamped on beam pipe
- **x** No study on the impact of beam pipe deformation
- **x** No technical drawing available (manpower)

Mechanical alignment

- Initial survey (<100μm) should be good enough
- ✗ <u>Note:</u> IR light go through CMOS sensors (both sides)

Mounting concept

x No detail work done

- Overview
- Mechanics
- Cooling
- Cabling
- Material budget

Two options

Room temperature operation

- **x** CMOS-like sensors
- **x** Passive cooling
 - Air flow ~ 1 m/s (for mech. Stability)
 - ➔ Sensor Temp~10-30 °C
 - ➔ Air Temp. Under study
- **x** No real cryostat, nevertheless
 - ➔ Faraday cage needed
 - ➔ May require air separation / SIT
 - ➔ Some thickness of aluminium
- **x** Tubes required on beam pipe
 - ➔ Diameter ? mm

Negative temperature operation

- **x** FinePixel-CCD-like sensors
- **x** Active cooling required
 - ➔ C02 evaporation in tubes
 - → Sensor Temp~ -(5-15) °C
- **x** Real cryostat needed
 - → Backbone 0.5 mm aluminium
 - ➔ Isolation material = 10mm styropor
 - → 0.15(?) % X0
- **x** Tubes required on beam-pipe
 - **→** ?

Overview

Mechanics

Cooling

Cabling

Material budget

Cables

Basic option

- Flat kapton cables running from each ladder to the beam pipe
- Small patch panel on the cryostat to interconnect to other flat kapton cables running to the next larger patch pannel some meters away
- **x** 2 such cables for each ladder
 - → \sim 200 cables divided on the 2 end-caps
- $\textbf{\textit{x}}$ ~ Kapton cable \sim 50 μm thick, $\sim 1 cm$ wide
- ✗ After some distance (meters) conversion to long distance cables
 - → How much ?
 - → What kind ?