Study of Higgs Selfcouplings at ILC

Junping Tian Tsinghua University

 $e^- + e^+ \rightarrow \nu \bar{\nu} H H$

(fast simulation)

 $\sigma = 71.3 \text{ ab}$ @Ecm = 1TeV

ISR No BeamStrahlung

 $e^- + e^+ \rightarrow \nu \bar{\nu} H H \rightarrow (\nu \bar{\nu}) (b\bar{b}) (b\bar{b})$

previous!

Pre-selection:

- number of reconstructed particle (E>0.1GeV) >= 40
- number of isolated lepton = 0
- force all the particles to four jets
- combine the four jets by minimizing

$$\chi^2 = \frac{(M(b,\bar{b}) - M_H)^2}{\sigma_{H_1}^2} + \frac{(M(b,\bar{b}) - M_H)^2}{\sigma_{H_2}^2}$$

constraint implied in the pre-selection:

|M(bb)-M(H)| < 80 GeV

previous!

preliminary results

no beam polarization $E_{\rm cm} = 1000 {\rm GeV}, M_H = 120 {\rm GeV}$ $\int Ldt = 2 {\rm ab}^{-1}$

	ບບHH(ບບbbbb)	tt-bar	WWZ	ZZZ	ZZH	ννΖΖ	vvWW	ttH	υυΖΗ
MC	500K	500K	500K	500K	500K	50K	50K	50K	50K
expected	142.6(63.4)	377600	123400	1664	700	12100	30200	4960	2500
pre-selection	101.3(54.4)	146603	25653.6	586.1	219.4	5812	13658	134.2	1452
Evis<600	96.8(51.9)	25764.4	10361.4	310.3	119.8	5638	13237	57.8	1379
mvatt>0.8	25.1(15.0)	302.1	58.5	1.25	1.26	120.8	161	1.19	89.0
noff4>0	10.2(8.58)	31.0	2.22	0.08	0.20	6.8	0	0.50	12.8
noff3>2	7.18(6.72)	5.29	0.25	0.05	0.10	4.11	0	0.20	6.90
mjet4>2	7.10(6.71)	1.51	0	0.05	0.10	4.11	0	0.20	6.85

analysis strategy changed

- the previous non isolated lepton criterion is a bit tighter (85%) as a preselection. we used a new looser one (98%).
- in order to suppress the vvZZ and vvZH background, we need better mass resolution. there are two factors which effect the resolution: miss jet clustering and wrong jet pairing. first we defined a quantity to tag the jet, and then we can evaluate the wrong pairing possibility of a specified jet pairing algorithm.
- a new jet pairing algorithm based on the likelihood of the invariant mass of jet pairs was used.
- previously, we only trained the neural-net for tt-bar background, now we trained another neural-net for vvZZ and vvZH.

criterion of isolated lepton

red: all the particles from signal vvbbbbblue: leptons from the semi-leptonic decay of tt-bar

coefficients from Fisher method in TMVA

previous:

now:

Econe < 20 GeV && P > 20 GeV

tagging of color singlet id for a jet

- for signal events, the four b jets come from two color singlets: H1 and H2.
- for each track in a jet, by using the truth information we can know which color singlet it comes from.
- for a jet, we can count the number of tracks and the sum of energy belongs to H1 and H2 respectively.

• define a quantity:
$$p = \frac{n_1 E_1 - n_2 E_2}{n_1 E_1 + n_2 E_2}$$

• if p > 0, the jet comes from H1, otherwise H2.

typical distributions of p value and product of two p values

usual jet pairing algorithm(χ^2)

minimizing $\chi^2 = \frac{(M(j_1, j_2) - M_H)^2}{\sigma_{H_1}^2} + \frac{(M(j_3, j_4) - M_H)^2}{\sigma_{H_2}^2}$ $M_H = 120 GeV \ \sigma_H = 6 GeV$

vvHH(vvbbbb)
22224
21391(96.2%)
19404
15500(79.9%)

probability of correct pairing

two issues:

- (i) the central value of invariant mass is not at 120 (115)
- (ii) the distribution of invariant mass is no longer a Gaussian, the resolution is not well defined, especially for resonance with natural width, like Z

Higgs mass resolution

dependence with fitting range

m±δm,σ±δσ	130	150	170		
110	114.8±0.1, 4.4±0.4	114.8±0.1, 4.6±0.1	114.7±0.1, 4.9±0.1		
111	115.1±0.1, 3.9±0.3	115.0±0.1, 4.4±0.1	115.0±0.2, 4.8±0.2		
112	115.3±0.1, 3.5±0.3	115.3±0.2, 4.2±0.2	115.1±0.2, 4.7±0.2		

a new jet paring algorithm(likelihood)

- (i) estimate the p.d.f of M(j1,j2), M(j3,j4) in the case of correct pairing (using truth information of the four jets we can do the correct paring): non-parametric kernal estimation
- (ii) define the likelihood of the real pairing: $L = f(M_{12})f(M_{34})$ and the corresponding χ^2 : $\chi^2 = -lnL = -ln(f(M_{12})) - ln(f(M_{34}))$
- (iii) choose the pair which has the smallest χ^2

kernel estimation (binned)

histogram of merged M(H1) and M(H2)

$$h_j = (\frac{4}{3})^{1/5} N^{-1/5} \Delta x \sqrt{\frac{N}{n_j}}$$

- nj: number of events in that bin
- m: number of bins
- Δx : bin width

.

- tj: center of that bin
- hj: resolution of that bin
- G(x; tj, hj): Gaussian Kernel

comparison of two jet pairing algorithms

probability of correct pairing

we also pair the jets under the hypothesis of vvZZ and vvZH. the invariant masses of Z and H in each hypothesis also could be used to suppress the backgrounds.

suppression of tt-bar

suppression of vvZZ and vvZH

preliminary results

no beam polarization $E_{\rm cm} = 1000 {\rm GeV}, M_H = 120 {\rm GeV}$ $\int Ldt = 2 {\rm ab}^{-1}$

	ບບHH(ບບbbbb)	tt-bar	WWZ	ZZZ	ZZH	ννΖΖ	νvWW	ttH	υυΖΗ
MC	500K	500K	500K	500K	500K	500K	50K	50K	500K
expected	142.6(63.4)	377600	123400	1664	700	12100	14048	4960	2500
pre-selection	115.8(61.1)	160971	27772	609.2	239.7	6112	13626	184.3	1620
Evis<600	110.8(58.3)	32326	11512	330.2	134.8	5932	171.5	89.2	1548
mvatt>0.8	33.0(20.7)	376.8	57.5	1.95	2.42	140.0	4.83	2.38	159.8
mvazzzh>0.6	20.6(12.8)	182.8	17.0	0.45	0.60	6.32	0	1.78	22.0
noff4>0 noff3>2	6.17(5.8)	3.78	0	0.02	0.05	0.36	0	0.40	2.16
mjet4>2 econe>0.1	5.95(5.62)	1.51	0	0.02	0.04	0.36	0	0.20	2.04

summary

vvHH: 5.9 tt-bar: 3.9

i. excess significance: 2.5σ

ii. precision for Higgs self-coupling: 45%

back up

µµZH background

sources of contamination:

- (i) mass resolution
- (ii) pari combination
- (iii) jet clustering

invariant mass of each jet

