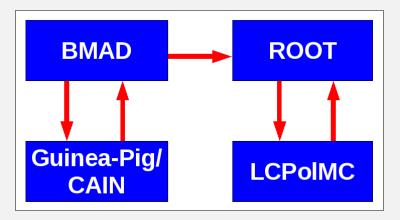
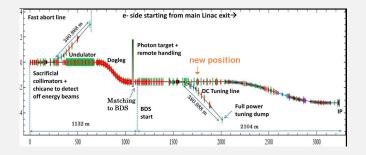
ILC Polarimetry: BDS Spin Tracking Studies to Estimate Uncertainties

Moritz Beckmann

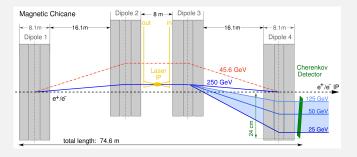

DESY - FLC

July 28, 2010

- Precise polarization measurement is not only a question of good polarimeters
- Distance of 2 km between up-/downstream polarimeters and IP requires spin tracking studies
- Key points of this study:
 - SB-2009: changes in the BDS design
 - Special issues in the interaction region
 - Alignment / ground motion


Simulation

- Beamline simulation incl. spin tracking: BMAD
- Beam-beam collision: Guinea-Pig/CAIN (yet to be included)
- Data processing and analysis: ROOT
- Polarimeter simulation: LCPoIMC (under construction)

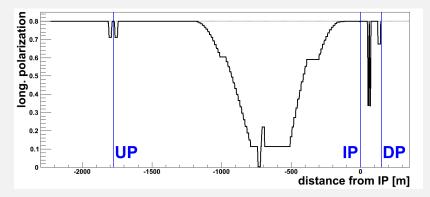

SB-2009: New Upstream Polarimeter Location

- · Separation of polarimeter and laser-wire chicane
- New polarimeter chicane behind branch-off to tune-up dump line
- Consequences for polarization measurement?
 - New lattice file under construction (until September)
 - Later: Shortening of BDS
 - Spin tracking study to examine suitability of new location

SB-2009: New Upstream Polarimeter Location (cont'd)

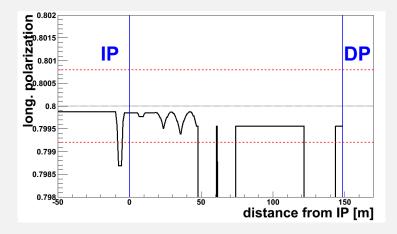
- Spacing:
 - Tune-up dump line branches off at small angle
 - Sufficient lateral space at new location?
 - Dispersion of chicane (1-11 cm)
 - Space requirement for Čerenkov detector
 - Additional space for electronics, shielding etc.
 - However, beam optics require quadrupoles between branch-off and pol. chicane
- Work status: waiting for new lattice

- Some elements are not yet included in lattice
 - Detector solenoid, anti-DID plus correctors
 - Crab cavity
 - SB-2009: cavity for travelling focus
- Effect of beam-beam collision to be investigated
- Work status (implementation):
 - Solenoid etc.: in progress
 - Collisions: later


- Magnet misalignments between polarimeters contribute to measurement uncertainty
- Need to investigate effect of static misalignments and ground motion Requirements on alignment and BPM precision
- Effect of beam alignment at Compton IPs vs. other effects

$$\theta_{\mathsf{Spin}} = a\gamma \cdot \theta_{\mathsf{Orbit}} = 2.27 \cdot \frac{E}{\mathsf{GeV}} \cdot \theta_{\mathsf{Orbit}}$$

- Compensation by feed-back correctors? Need for additional correctors?
- Work status: coming soon


First Results

- Up to now basically function tests
- Parameter cross-checks (simulation \leftrightarrow RDR) successful
- Plot: longitudinal polarization along BDS
 - Using latest available lattice
 - RDR beam parameters
 - Perfect magnet alignment, no collision effects

First Results (cont'd)

- Budget for BDS depolarization uncertainty: $\frac{dP}{P} = 0.1\%$
- Depolarization due to lateral beam size

Thanks for your attention!