Status of the Strip Clustering
 K. Kotera, Shinshu university

 Physics and Software meeting of ILD Asia 30th July 2010
Sc. length dependence of the Jet energy resol.n

Scintillator width $=5 \mathrm{~mm}$

 Using "Center method": Energies in isolate hits are put on the center of strip.45 GeV

100 GeV

- For 45 GeV Jets, the energy resolution (JER) is kept with split method for 90 mm scintillator strips.
- For 100 GeV jets, degradation of JER already starts with 90 mm strips.

summary of this talk

- $45 \mathrm{~mm} \times 5 \mathrm{~mm}$ strip ScECAL with Split method has the same energy resolution (JER) as the one with $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ the square ScECAL not only for $\sqrt{ } s=91 \mathrm{GeV}$ but also for $\sqrt{ } \mathrm{s}=200$ GeV.
- With even Split method, degradation of JER already starts with 90 mm strip ScECAL for $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$ events, while it is still kept with 90 mm strip for $\sqrt{ } \mathrm{s}=91 \mathrm{GeV}$ events.

ToDo

- Go into $\sqrt{ } \mathrm{s}=360 \mathrm{GeV}, 500 \mathrm{GeV}$
- To see the limit length of strip to keep the best JER (depending on $\sqrt{ } \mathrm{s}$)
- Tune PandoraPFA parameters to get same or better Jet energy resolution as the M. Thomson's analyses. 30\% / 25\%
- Fix the problem with Druid (calorimeter hits after split method cannot be seen in Druid, even PFOs are reconstructed)
- Write code for the Endcap hits
- Boundary treatment
- Stave - Stave, Module - Module, Endcap - Barrel
- Fine Tune of Split method (to try some new ideas)
- Check the performance of Triplet method
- Use new Mokka (it intrinsically has strip shape ...)

Sc. length dependence of the Jet energy resol.n

