AHCAL Electronics

SPIROC2 and HBU measurement results

Mathias Reinecke

CALICE main meeting Univ. HASSAN II, Casablanca, Morocco Sept. 23rd, 2010

Outline

- Setup Electronics for Charge Injection
- > SPIROC2 measurement results
 - Compensation capacitors
 - HOLD Scans, Dynamic Range
 - Autotrigger / Testbeam / MIP Efficiency
 - Rate Dependency
- Results from LED system
- > Outlook
- Conclusions

Charge Injection Setup I – HBU_I in laboratory

Looks like an easy setup, but

Charge Injection Setup II

HBU has not been designed for charge-injection tests! Initial idea: Analogue SPIROC tests => LAL testboards, HBU => tests of digital part / readout chain / DAQ / system (SiPMs)

Due to new effects: HBU is used for analogue tests as well...

SP2 PA compensation capacitors

Problem: Cell dependent amplitude

Effect cannot be eliminated as at LAL by a high blocking-cap on VDDD2 (R. Honda)

Effect = f(amplitude, input signal shape, <u>PA comp. caps</u>) Effect != f(trigger rate, block-caps@100µF)

HG PA=100fF, LG PA=200fF 50 ns shaping, ext. Hold/Trig. hold-time=95ns (LG), 130ns (HG) Charge Injection with 5ns risetime. No PA compCs

SP2 PA compensation capacitors

Holdscan w/o compensation capacitors (CompC)

compensation caps change input signal shape....

SP2 PA compensation capacitors

Dynamic Range HG and LG

CompCs improve severely cell uniformity, CompCs increase HG dynamic range, CompC=3pF still not large enough for very fast signals

=> Input signal shape changes amplitude.

HG PA=100fF, LG PA=200fF 50 ns shaping, ext. Hold/Trig. Charge Injection with 2ns risetime.

DES

SP2 Holdscans

Problem: Position of Hold-Maximum depends on signal amplitude. Position is different for HG and LG

Compensation capacitors do not improve this behaviour.

HG PA=100fF, LG PA=200fF 50 ns shaping, ext. Hold/Trig. Charge Injection with 2ns risetime. No PA compCs

By Mark Terwort, Mathias Reinecke

SP2 Holdscans

Problem: Position of Hold-Maximum depends on preamp. setting (left) and varies from ASIC to ASIC (right)

SP2 Rate dependency

Good behaviour at small signals: -no discharge of analogue memory -no rate dependency Fairly good behaviour at large signals: -no discharge of analogue memory -low rate dependency in last mem.-cells -amplitude decay in first mem.-cells

HG PA=100fF, LG PA=200fF 50 ns shaping, ext. Hold/Trig. hold-time=95ns (LG), Charge Injection with 5ns risetime. No PA compCs

DESY Testbeam – ext. Trig vs. Autotrigger

Jeremy Rouene

Mathias Reinecke | CALICE meeting Casablanca | Sept. 23rd, 2010 | Page 11

Autotrigger MIP efficiency

A MIP efficiency of ~95% can be achieved for a thresholdpedestal- cut at 10^{-4} for most channels (autotrigger mode).

See more results in the report: 'Analysis of the autotrigger of the read out chip of the frontend electronics for the HCAL of the ILC.' (Hamburg, Aug. 2010) by Jeremy ROUENE Mathias Reinecke | CALICE meeting Casablanca | Sept. 23rd, 2010 | Page 12

SP2 autotrigger threshold definition

by testbeam...

by charge injection...

Spread: Channel-wise threshold adjustment necessary!

Results by Jeremy Rouene

Mathias Reinecke | CALICE meeting Casablanca | Sept. 23rd, 2010 | Page 13

LED Calibration Systems II – DESY + Uni Wuppertal

- LED uniformity under investigation
- Wuppertal recommended new LED driving circuit and new LED type with lower spread in output.
- HBU2 will contain solder parameter field in order to adjust LED power per channel.
- Problems: LED light output spread, dynamic range (saturation)

LED Calibration System – Current Activities

Results by Julian Sauer DESY

Next important steps (the last two big points):

- Ongoing system tests are important, but delay redesigns as well.
- Current effects should be visualized by SPIROC2 simulations (LAL).
- Studies from R. Honda at LAL show very similar effects => origin SPIROC2 ?
- Not much activity on DIF/DAQ development at DESY currently.

