Birks' Coefficient of the AHCAL Scintillator

Alexander Tadday University of Heidelberg

KIRCHHOFF-INSTITUTE FOR PHYSICS

Alexander Tadday - CALICE Collaboration Meeting - Casablanca - 23.09.2010

Outline

- Reminder: Birks' law and measurement of Birks' coefficient kB with electrons
- Particle step-size dependence of kB
- Transformation of kB for use in MOKKA
- Birks' coefficient for other particles than electrons
- Conclusion & outlook

Birks' Saturation Formula

- Specific energy loss dE/dx is high before particle is stopped
- High ionization density dI/dx α dE/dx

- Quenching: Excited molecules can interact and may de-excite radiationless
- \bullet Light yield per unit length dL/dx is reduced for high dE/dx
- Non-linearity described by Birks' formula:

Birks' Saturation Formula

Experimental Setup (MPIK Heidelberg)

- PMT measures light yield
- Germanium detector measures Energy of Compton scattered photon *E*_{Ge}

$$E_{e^-} = 662 \, keV - E_{Ge}$$

- Coincidence trigger PMT and Ge-detector
- Measured energy range of electrons
 ~ 30 140 keV
- Thanks to Christoph Aberle and Stefan Wagner for the ability to use the setup
- Detailed setup description in [1]

Experimental Setup (MPIK Heidelberg)

kB Determination (standalone)

- Exp. data: Light-yield as function of electron energy
- Fit calc. Light yield (Birks' formula)
 to exp. data
 → Best kB, S

Fit function:

$$LY = \int_0^R \frac{dL}{dx} (E) dx \approx \sum_{i=1}^{R/\delta x} \frac{dL}{dx} (E_i) \delta x$$

Range R: Total distance a particle can travel before it stops

Alexander Tadday - CALICE Collaboration Meeting - Casablanca - 23.09.2010

kB Determination (standalone)

- Exp. data: Light-yield as function of electron energy
- Fit calc. Light yield (Birks' formula)
 to exp. data
 → Best kB, S

Fit function:

$$LY = \int_0^R \frac{dL}{dx}(E) dx \approx \sum_{i=1}^{R/\delta x} \frac{dL}{dx}(E_i) \delta x \qquad \text{size of } \delta x$$

Range R: Total distance a particle can travel before it stops

Alexander Tadday - CALICE Collaboration Meeting - Casablanca - 23.09.2010

~ C

Fit function:

$$LY \approx \sum_{i=1}^{R/\delta x} \frac{S \cdot \frac{dE}{dx}(E_i)}{1 + kB \cdot \frac{dE}{dx}(E_i)} \delta x$$

Alexander Tadday - Heidelberg ILC Meeting - 28.06.2010

Measurement of kB

4000

Light yield [a.u.] Linear fit 3500 • Exp. data: **Birks Model** Light-yield as function 3000 of electron energy 2500 2000 Fit calc. Light yield 1500 (Birks' formula) 1000 to exp. data 500 → Best kB, S 0₀ 0.02 0.04 0.06 0.08 0.12 0.1 0.14 0.16 Kinetic energy [MeV] $LY_{exp} \stackrel{!}{=} LY \approx \sum_{i=1}^{R/\delta x} \frac{S \cdot \frac{dE}{dx}(E_i)}{1 + kB \cdot \frac{dE}{dx}(E_i)} \delta x$

Measurement of kB

4000 Light yield [a.u.] Linear fit 3500 • Exp. data: **Birks Model** 3000 Light-yield as function of electron energy 2500 2000 Fit calc. Light yield **1500** (Birks' formula) 1000 to exp. data 500 → Best kB, S 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 Kinetic energy [MeV] $LY_{exp} \stackrel{!}{=} LY \approx \sum_{i=1}^{R/\delta x} \frac{S \cdot \frac{dE}{dx}(E_i)}{1 + kB \cdot \frac{dE}{dx}(E_i)} \delta x$

→ Birks' coefficient kB and S depend on the step-size!

Measurement of kB

→ Birks' coefficient kB and S depend on the step-size!

kB in GEANT4

kB in GEANT4

kB in GEANT4

- Two things need special attention compared to "standalone" calculation
 - Particle step-size
 - Secondary particle production cut

Step-size in GEANT4

- Reduce computational effort
 Tradeoff between computation time and precision
- For ionization process, Stepping function determines the maximum step-size allowed Δx_{max}

$$\Delta x_{max} = \begin{cases} \alpha R + f(\rho, \alpha), & R > \rho \text{ (high energy)} \\ R, & R < \rho \text{ (low energy)} \end{cases}$$

- ρ: Final range (Default value: 1mm)
- α: dR/R (Default value: 0.2)

\Rightarrow Small values of ρ and α result in a small step size

Secondary production cut Pcut

 Secondary particles (delta-electrons) are simulated differently, according to their range at production R_{sec.}

Secondary production cut Pcut

 Secondary particles (delta-electrons) are simulated differently, according to their range at production R_{sec.}

Average step-size

Electron stepsize averaged over simulation runs with specific ρ and α values

Average step-size

kB with GEANT4

kB with GEANT4

kB with GEANT4

Alexander Tadday - CALICE Collaboration Meeting - Casablanca - 23.09.2010

Production Cut Dependence

Production Cut Dependence

Alexander Tadday - CALICE Collaboration Meeting - Casablanca - 23.09.2010

"standalone" calculation: step size: 1nm

kB = 0.0151 cm/MeV

"standalone" calculation: step size: 1nm "kB = 0.0151 cm/MeV Standalone GEANT4/MOKKA: step-size: ρ = 1mm, α = 0.2 + production cut: R_{cut} = 5µm KB = 0.02245 cm/MeV

What about other particles?

Birks' coefficient for other particles

- Currently, only measurement for electrons
- Reasonable assumption: *The value of Birks' coefficient is identical for all particles if it is calculated "correctly"*
- Correctly means:
 - Small step-size δ_x
 - Large range cut Pcut
- Assumption for all particles: kB = 0.0151 cm/MeV
- Transform kB values for usage in GEANT4/MOKKA

Most of experimental data fits to solid line **a** (Birks' Formula).

Data generation

Particle type (e.g. proton) kB = 0.0151 cm/MeVS = 29807 a.u. **GEANT4** small step-size (α , ρ) large production cut P_{cut}

Data generation

Data generation

Proton chi-squared distr.

Chi-squared distributions

- Different possibilities to combine results: - Common kB, S for all particles
- Particle specific kB, but common S

..... current kB 0.007943cm/MeV

Summary of Birks' Coefficients

		е-	e +	proton	alpha	pi+	pi-
kB [cm/MeV]	small step- size	0.0151	0.0151	0.0151	0.0151	0.0151	0.0151
S [I/MeV]		29807	29807	29807	29807	29807	29807
kB [cm/MeV]	Mokka default R _{cut} = 5e-6m	0.02245	0.023	0.0100	0.004*	0.017	0.014
S [1/MeV]		30852	30925	19200	9327 *	30244	26586

* no clear minimum of chi² detectable (strong correlation between S and kB)

Conclusion & Outlook

- Birks' coefficient measured with electrons
- kB value needs to be adapted to step-size and production cut in GEANT4
- Assumption of common kB at small step-size and large cut allows to determine GEANT4 kB values of other particles
- To do
 - Possible solutions
 - common kB, S (put "average" kB into GEANT4)
 - common S, but particle specific kB (some "small" modifications neccessary)
 - Study impact of change in kB

Thank you for your attention!

References

- [1] Stefan Wagner, "Ionization Quenching by Low Energy Electrons in the Double Chooz Scintillators", Diploma Thesis (2010)
- [2] M. Hirschberg et. al. "Precise Measurement of Birks kB Parameter in Plastic Scintillators", IEEE Trans. Nucl. Sc., Vol. 39, No. 4, 1992

Backup

Step Function

Total chi-squared

