

New patterns in DRUID 1.8

Manqi RUAN

Laboratoire Leprince-Ringuet (LLR) Ecole Polytechnique 91128, Palaiseau

Outline

Introduction

What's new:

- More supported Icio collections & flexible parameters managing
- More buttons: changing styles/color & Collection selection ...
- P_T cuts for MCParticle & Stress testing with high-multiplicity events
- GDML Geometry browser

Summary & plans

DRUID: 3D display for ILD

- Motivation:
 - To understand the ILC events & jet/shower details
 - To understand/analysis reconstruction algorithm performance

Left: 40GeV pion shower Right: 230GeV $Z(\mu\mu)H(\tau\tau)$ event

Developed by Manqi, Vincent, Gabriel, Daniel & Jayant

• Based on ROOT TEve class, visualize event information (in slcio file) and detector geometry (gear xml or gdml file) in arbitrary combination & different styles

What's new

- More LCIO collections supported (trk, vtx, cluster)
- Flexible parameter managing beside the steering file
 - bin/Druid: print a instruction for the input format
 - Separate geometry & data display
 - bin/Druid *.slcio: display the first event in given slcio file
 - bin/Druid *.gdml(*.xml): display detector geometry
 - Together with other arguments:
 - bin/Druid *.slcio \$EventNumber: given event in given slcio file
 - bin/Druid *.slcio *.gdml(*.xml): first event & geometry
 - bin/Druid *.slcio *.gdml(*.xml) \$EventNumber
 - bin/Druid *.slcio *.gdml(*.xml) \$RunNumber \$EventNumber
- Screen output with collection statistic and sub detector list

New Buttons & P_T Cut

- Buttons: from Left to Right
 - Target: select rotation center
 - Reroll object color if supported, i.e, calorimeter hits
 - Drew back display to origin orientation & scale
 - Collection selection: switch between two scenario
 - Minimal (default):
 MCParticle + Simulated Hits (+ Reconstructed PFO + geometry if available)
 - Maximal:

All supported collection, including digitized hit, cluster/tracker, vertex, etc

P_T Cut on MCParticle: accelerate the display

Stress testing

6

With 500GeV ttbar evts: ~ 5 sec to migrate to different event Dell Latitude, E6500

GDML Geometry browser

QQ evt @ Z Thr, ILD

Introduction

- GDML file: simulation level geometry information, could be dumped from Mokka (higher than mokka 07-03, and converted to root file for Druid)
- Druid Option:
 - Tunable transparency, color, background, mount/unmount subdetectors...
 - Tunable display depth

Examples

Inner Detector of ILD: Vtx, SiD...

and partial of the Calo

Changing display depth

Based on the hierarchy of geometrical volume defined in gdml file

Higher Depth = More detailed info

Example: ECAL Module

ECAL Module:

- Depth = 1: Total Volume (fine for Event Display)
- Depth = 2: Divided into different slabs
- Depth = 3: Equip each slab with layers of different materials (simulation level)

Depth = 2

Depth = 3

Summary & To do

Summary

- New patterns added, make Druid more flexible & easy to use
- Together with the gdml file, Druid could work as a geometry browser, allows to visualize detector geometry information up to simulation level
- Availability:

DESY SVN server: svn co https://svnsrv.desy.de/svn/Druid/trunk Druid

LLRforge: svn co https://llrforge.in2p3.fr/svn/Druid/trunk Druid

and http://llr.in2p3.fr/~ruan/ILDDisplay

• To do

Improve the hierarchy in Mokka gdml file: easier to browser

BK Slides

Understand/Analysis reconstruction software performance

Display reconstructed & MC objects simultaneously:

Same τ jet, from left to right:

- PFO;
- PFO + MCParticle;