Hadron resolution analysis for the CALICE AHCAL

M. Chadeeva, M. Danilov, O. Markin and V. Morgunov

ITEP, Moscow

1

Plan

Updates of the PandoraPFA test results from CAN-024

- improved mapping from CALICE to ILD geometry
- more sophisticated treatment of isolated hits
- results
- Software compensation approach
 - idea
 - correction factor from hit energy spectrum
 - correction procedure
 - results

Data and Software

- CERN 2007 test beam data taken with complete setup
 - pions in the energy range from 10 to 80 GeV
 - pion event selection includes:
 - muon identification
 - electron or proton separation (Cherenkov counter)
 - selection by shower starting layer
 - reconstruction software as of April 2010, ECAL and HCAL em calibrations for MIP to GeV conversion
- MC samples for QGSP _____BERT, FTFP ____BERT, FTF ____BIC and LHEP phys. lists from GEANT4 9.2 (Mokka v07-00, detector model TBCern0707 ____p0709)

Particle Flow Analysis approach

PFA approach: only neutral particle energies are derived in a calorimeter whereas the energies of charged particles are reconstructed in a tracker.

The confusion term is a result of shower overlapping, when the reconstructing program mixes up hits from showers created by charged and neutral hadrons.

M. A. Thomson, NIM A611:25-40,2009

PandoraPFA test: shower overlapping

Two pion showers from test beam data are overlaid, mapped into ILD geometry and passed to PandoraPFA processor.

To emulate a neutral hadron, all hits before shower start are removed. Remained hits of this emulated "neutral" are shifted w.r.t. charged pion hits at a studied transverse distance.

The studied distances vary from 5 cm to 30 cm that are typical for 100 GeV jets in a 4 T magnetic field.

PandoraPFA test: updates

Improved mapping: hits of both showers are mapped into the detector similar to ILD, but with layer and absorber thicknesses equal to those of the CALICE prototypes -> improvement in confusion term -5%

CALICE test beam

New treatment of isolated hits: the energy of unused isolated hits and small (< 5 hits) clusters was divided between charged and neutral proportionally to their reconstructed energies -> significant changes in RMS (up to 50%)

PandoraPFA test: mean of deviation

The energy of 10-GeV neutral hadron <u>recovered</u> by PandoraPFA processor is compared with that <u>measured</u> by CALICE calorimeter.

PandoraPFA test: confusion term

The RMS deviation of the <u>recovered</u> energy of 10-GeV neutral hadron from its energy <u>measured</u> in the calorimeter can be interpreted as a confusion error. Updates result in significant RMS_a improvement at 20÷30 cm.

PandoraPFA test: summary

- CALICE test beam data were used to test the PandoraPFA algorithm.
- Improved procedures for mapping and isolated hit treatment were implemented.
- The modifications resulted in reducing RMS_p deviation of the recovered energy from the measured energy for the case that determines the confusion error for 100 GeV jets in a 4 T magnetic field (i.e. for the distance of about 25 cm between 10-GeV neutral and 10-GeV charge hadrons).
- The modifications keep a good agreement between test beam data and MC simulation.

Software compensation: idea

Non-compensating calorimeter -> response depends on em fraction

Hit energy spectrum shapes are different for high and low detected response -> spectrum shape is related to the amount of em fraction

Events with shower start in first 5 HCAL layers are analyzed (most fully contained in HCAL)

Software compensation: hit spectrum shape

CALICE Week at Casablanca, Sep. 22-24,2010

11

Software compensation: correlation

Software compensation: correction procedure for the *i*-th event corrected HCAL energy: $E_{cor} = E_{HCAL} \times C_{lim} / C_{av}$ corrected shower energy: $E_{sh} = E_{cor} + E_{TOMT}$ I^{st} step reconstructed energy: $E_{T} = E_{st} + E_{FCAL}$ additional polynomial correction to keep linearity: $= E_{sh} (a_{1} + a_{2}E_{sh} + a_{3}E_{sh}^{2}) + E_{ECAL}$ coefficients from fit of $(E_{\text{beam}} - \langle E_{\text{FCAL}} \rangle)$ vs. $\langle E_{\text{sh}} \rangle$

Software compensation: linearity

Residuals to linearity for events with shower start in first 5 HCAL layers, without and with energy correction applied

Without correction: energy sum is multiplied by 1.19 (e/ π ratio) With 2-step correction: a₁=0.958 a₂=0.0047 GeV⁻¹ a₃=-2.8×10⁻⁵ GeV⁻² CALICE Week at Casablanca, Sep. 22-24,2010 14

Software compensation: relative resolution

15

Software compensation: relative improvement

by 5% ÷ 20% for π^- (12 runs 10÷80 GeV) by 15% ÷ 20% for π^+ (12 runs 30÷80 GeV)

Software compensation: data and MC The same mip2gev coefficients from em calibration and e/π ratio are applied to MC samples as to data.

Before correction QGSP_BERT is in better coincidence with data than FTFP_BERT (FTF_BIC behavior is similar to that of FTFP_BERT). Both physics lists predict better resolution after correction for higher energies. The correction procedure does not change the MC linearity behavior.

Software compensation: summary

- The software compensation approach based on hit spectrum shape analysis is proposed which includes one correction factor for HCAL deposited energy.
- The proposed 2-step software compensation procedure allows to improve pion energy resolution by $-10\% \div 20\%$ in the energy range from 10 to 80 GeV, while keeping the linearity within 2%.
- QGSP_BERT, FTFP_BERT and FTF_BIC physics lists predict more significant resolution improvement after correction comparing to data.
- TO DO: expand energy range, study more physics lists, include more runs (especially high energy π -), invoke ECAL

PandoraPFA test: efficiency

The probability to recover the 10-GeV neutral hadron energy within 2 and 3 standard deviations from its real energy versus its distance from 10-GeV (continuous lines) and 30-GeV (dashed lines) charged pion

Software compensation: energy distributions

