

Transport of Calibration Constants

<u>Nils Feege</u>¹, Katja Seidel² ¹University of Hamburg, ²MPI Munich

CALICE Meeting, Casablanca, September 22-24 2010

Outline

- Muon Calibration Sets
- Dependence of Muon Calibration on Operation Conditions
- Transport Calibration Sets FNAL \rightarrow CERN
- Summary & Outlook

AHCAL Muon Calibration

3

Muon Calibration Sets

Goals: • establish and check procedures to shift A^{MIP} to different U,T
• apply FNAL calibration to CERN runs → linearity? resolution?

FNAL: Temperature Dependence of A^{MIP}

 nalf-layer means: large spread, only use detector average usable

half layer

FNAL: Temperature Dependence of A^{MIP}

Set 4:
$$\frac{1}{A_4} \frac{dA_4}{dT} = \frac{A_5 - A_4}{A_4} \cdot \frac{1}{T_5 - T_4}$$

Set 6:
$$\frac{1}{A_6} \frac{dA_6}{dT} = \frac{A_6 - A_3}{A_6} \cdot \frac{1}{T_6 - T_3}$$

Set 3: $\frac{1}{A_3} \frac{dA_3}{dT} = \frac{A_6 - A_3}{A_3} \cdot \frac{1}{T_6 - T_3}$

Set	I/A dA/dT	U/A dA/dU
	-3.7 %/K	5.6 %/100mV
3	-3.1 %/K	4.8 %/100mV
6	-3.6 %/K	5.5 %/100mV
4	-2.3 %/K	3.5 %/100mV
5	-2.6 %/K	4.0 %/100mV

- $dA/dU = (dA/dT) / (- dU_{bd}/dT)$
- $dU_{bd}/dT = 65 \text{ mV/K}$
- sets 1, 3 and 6: dA/dT consistent, difference due to reference A
 sets 4 and 5: different dA/dT? → More data taken under controlled conditions could improve understanding!

Non-Linearity of A^{LED}

- linear approximation in operation range looks reasonable
- saturation of A^{LED} only far above operation range

Non-Linearity of A^{LED}

- Change in dA/dU for 200 mV bias voltage increase: + 10%
- Need to investigate more cells!

Transport FNAL → CERN

set 3 - set 1, set 5 - set 1

Transport FNAL → CERN

set 3 - set 1, set 5 - set 1

CERN - 20 GeV Data

CERN - 20 GeV Data

AHCAL Linearity

- 0.028 GeV/MIP fixed
- Reduce beam energy by 0.2 GeV (energy loss in ECAL)
- U,T correction: **detector average**
- use ECAL \rightarrow improvement < 20 GeV

AHCAL Resolution

• U,T correction: detector average

→ Consistent results for using CERN or FNAL calibration for CERN runs

Summary

- Temperature correction works within 3% for energy sum (all studied calibration sets)
- Shifting FNAL calibration sets to CERN conditions possible
 - mean remaining offset: 0% 5%
 - spread of offset between layers: 10%
 - no significant impact on resulting linearity or resolution