SiPM-Tile Direct Coupling Simulations

François Corriveau and Alexandra Thomson

IPP/McGill University

CALICE Collaboration Meeting, Casablanca, Morocco

22 September 2010

- Direct coupling
- Simulations: standalone & GEANT4
- Measurements at MPI München
- New simulation results
- Outlook

GEANT4 vs Standalone MC

Standalone simulation by F.Corriveau, Z.Niu (2008) and A.Thomson (2009)

- Straightforward C++ code, very fast, simple geometries
- Beam description, angle, ionisation, light emisssion
- Parameters for light propagation, reflection/absorption

Geant4 code from V.Saveliev, developped by A.Thomson (2009-2010)

- Tile geometry and properties more flexible, physics handled by GEANT
- Many parameters (e.g. surface properties) are somewhat confusing and long to tune
- Most useful to have both simulations programs vs actual data

Standalone Configurations

.. and numerous variations in position, sizes, tuning of attenuation, threshold, surfaces, beam, etc..

Bottom Spherical Cutouts

Measurements at MPI

Scintillator Tile Uniformity Studies for a Highly Granular Hadron Calorimeter

Diploma Thesis of Christian Soldner Ludwig-Maximilians-Universität Department of Physics

Max-Planck-Institut für Physik 2009

F.Corriveau, IPP/McGill Univ. CALICE Week – 2010.09.22

SiPM-Tile Direct Coupling Simulations 7/11

Side Dimples

this configuration was chosen first for simulations

Shallow Dimple

Corner Dimple

Most recent configuration, from Frank Simon's proceedings paper at CALOR 2010

not simulated yet

Summary

- A large number of configurations were tested with each of the standalone and GEANT simulation programs, many of them overlapping for cross-checks.
- The simulations reproduce the general features of all available measurements (NIU, Regina, MPI Munich), and details of the more simple configurations.
- In view of the limited manpower, an excessive amount of tuning (e.g. surface properties, thresholds) needs to be done to achieve precise predictive power in distributions and efficiencies for alternate configurations.
- Calculations could be resumed if necessary

Backup Slides

Standalone Results

The MPPC is located in the center of the bottom face

30x30x5 mm³ tile

Measurement from NIU (V.Zutshi et al.)

Scan Across Green Square Cell with White Paint

Simulation

GEANT – Types of Surface

poor GEANT documentation on surface types

not included yet: smearing due to source

very large differences observed

need more sets of measurement data to tune the simulation