Scintillator Tiles and Test Beam Plans

Calice Collaboration Meeting – Casablanca 2010

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Christian Soldner Max-Planck-Institute for Physics

- Aims of T3B (Tungsten Timing Test Beam)
- Scintillator Tile Development
- The Test Beam Setup(s)
- First Muon Data from CERN Installation
- Summary

AIMS OF T3B

- Information about the time structure of hadronic showers in Tungsten is crucial for the development of a CLIC HCAL
 - The observed Time Structure depends on the active medium (sensitivity to neutrons) → Need scintillators to evaluate an analog HCAL
 - Directly coupled scintillator tiles, read out with fast digitizers can be used for detailed measurements of the time structure of the shower

- Construct one timing layer = one strip of tiles
- Run together with the CALICE AHCAL at CERN PS in November
- Match T3B Events to CALICE Events to obtain the shower start

Obtain first information on the timing of the lateral and longitudinal shower profile

Casablanca, 23.09.2010

Christian Soldner

SCINTILLATOR TILE DEVELOPMENT

The Core: Scintillator Tile Design

CALICE

- Mephi Pulsar - Embed WLS

- MPPC

- Direct coupling

T3B

Direct Coupling

- Avoid cost and time consuming procedure of WLS embedding and SiPM alignment
 - ightarrow Couple photomultiplier directly to the scintillator tile
 - ightarrow Possible through development of blue sensitive SiPMs
 - → Needs: Modification of tile geometry to obtain uniform response to penetrating particles

The Core: Scintillator Tile Design

CALICE

- Mephi Pulsar - Embed WLS

- MPPC

- Direct coupling

T3B

Direct Coupling

- Avoid cost and time consuming procedure of WLS embedding and SiPM alignment
 - \rightarrow Couple photomultiplier directly to the scintillator tile
 - ightarrow Possible through development of blue sensitive SiPMs
 - → Needs: Modification of tile geometry to obtain uniform response to penetrating particles

Result from the Test <u>Bench:</u> -Irradiation with Sr90 (β -Decay) -Lateral Scan over Tile

•

The Core: Scintillator Tile Design

CALICE

- Mephi Pulsar - Embed WLS

- MPPC

- Direct coupling

T3B

Direct Coupling

- Avoid cost and time consuming procedure of WLS embedding and SiPM alignment
 - ightarrow Couple photomultiplier directly to the scintillator tile
 - ightarrow Possible through development of blue sensitive SiPMs
 - → Needs: Modification of tile geometry to obtain uniform response to penetrating particles

<u>WLS Measurement:</u> Reduced signal amplitude. Sensitivity of MPPC not matched to fiber emission.

The Core: Scintillator Tile Design

CALICE

- Mephi Pulsar - Embed WLS

- MPPC-50C - Direct coupling

T3B

Direct Coupling

- WLS adds additional delay to the photon signal (excitation process)
- Improve the timing of the intrinsic signal through direct coupling

Result from the Test Bench:

- Irradiation with Sr90 (*β*-Decay)
- Record and average the signal of 500 penetrating electrons
- -Signal faster and faster peaking (!)
- ightarrow Important to determine the ToFH accurately

THE TEST BEAM SETUP(S)

The Test Beam Setup of T3B

- One layer = row of 14 scintillator tiles
- Tile size: 3 x 3 x 0.5 cm³
- SiPM: Hamamatsu MPPC-50C
- Readout: 4 x PicoScope 6403
 - Fast Digitizer (1.25GSa/s on 4CH)
 - Deep memory (1GSa)
 - Fast data capturing (up to 1MHz)

T3B Test Installation at CERN

Power distribution: HV for SiPMs (~73V), LV for preamps (More sophisticated installation foreseen)

Special setup: Muon Telescope, not used in November

Power supplies: SiPM HV, Preamp LV in addition: DVM, not mandatory for November

PicoScopes: The heart of the DAQ

DAQ Computer, Screen not mandatory in November

Casablanca, 23.09.2010

Christian Soldner

- T3B Timing Layer is positioned behind 30 Tungsten and AHCAL Layers
- Crucial: Correlate events in T3B with events in the W Stack
 Determine the position of the timing layer relative to the shower start

- Match events by ensuring T3B records all CALICE triggers (spill by spill) (CALICE trigger rate: ~1-2kHz > maximum T3B trigger rate: ~1MHz)
- Identify CALICE timeout or calibration (fake) triggers:
 - <u>T3B Data:</u> Record beam trigger signal on one T3B input channel to directly
 - <u>CALICE Data:</u> Time stamp information of each CALICE event in final LCIO

- T3B Timing Layer is positioned behind 30 Tungsten and AHCAL Layers
- Crucial: Correlate events in T3B with events in the W Stack
 Determine the position of the timing layer relative to the shower start

- Match events by ensuring T3B records all CALICE triggers (spill by spill) (CALICE trigger rate: ~1-2kHz > maximum T3B trigger rate: ~1MHz)
- Identify CALICE timeout or calibration triggers:
 - <u>T3B Data</u>: Record beam trigger signal on one T3B input channel to directly
 - <u>CALICE Data:</u> Time stamp information of each CALICE event in final LCIO

T3B Calibration

SiPM Gain Monitoring:

Test Beam: Intermediate Noise Run Mode
 → Take ~250 Darkrate Events per Channel after
 each spill processing
 → ~3000 Events (≈ 6-12 Spills ≈ 4.5-9 minutes)
 suffice for SiPM Gain extraction

T3B Calibration

SiPM Gain Monitoring:

Test Beam: Intermediate Noise Run Mode
 → Take ~250 Darkrate Events per Channel after
 each spill processing
 → ~3000 Events (≈ 6-12 Spills ≈ 4.5-9 minutes)

suffice for SiPM Gain extraction

- <u>Test Bench: Gain-Amplitude Correlation</u>
- → Measure #p.e./MIP with Sr90 (note: e- ≠ MIP but correlation identical)
- → Steer through different Bias Voltages and Temperatures

→ Obtain:
$$A(T, U_{Bias}) = c(T, U_{Bias}) \bullet G(T, U_{Bias})$$

 \rightarrow Check consistency for different cells

Perform a Signal Correction using SiPM Gain Data

FIRST DATA FROM CERN INSTALLATION

First Results: Intrinsic T3B Timing

Test Arrangement A: 1 PicoScope External Trigger Input of PS: CALICE Trigger 1 Input Channel of PS: same CALICE Trigger

- ightarrow Histogram the timing of rising signal edge
- \rightarrow RMS of edge timing distribution \approx 400ps

Intrinsic time jitter of T3B DAQ ≈ 400ps

(Improvement through PicoScope trigger time offset possible)

- Test Arrangement B: 1 PicoScope
 - External Trigger Input of PS: CALICE Trigger
 - 1 Input Channel of PS: Beam Scintillator Trigger

No additional jitter introduced by CALICE DAQ

First Results: The Muon Telescope

Muon Candidates:

- \rightarrow Perform pedestal substraction
- → select Muon signals by a threshold of 4p.e. above the baseline

- Main goal of test: Study timing and efficiency of scintillators
 - Efficiency studies ongoing...

First Results: The Muon Telescope

- Main goal of test: Study timing and efficiency of scintillators
 - Efficiency studies ongoing...

→ Histogram the waveform integral of tile 1,2,3
 → MPV typically at 26p.e. (as expected from bench tests)

First Results: MIP Signal Timing

with Muon Telescope

- Test Arrangement C: 1 PicoScope → Standalone Run
 - Input Channel A,B,C of PS:
 - Trigger condition:

Scintillator Tile 1 (front), 2 (middle), 3 (back) connected

- Signal coincidence between front and back ightarrow study middle
- → Edge Timing given by sample above threshold (more sophisticated methods possible)

Investigate relative MIP Edge timing:

$$T_{rel} = T_B - T_A$$

Time resolution:

$$\Delta T_{tot,MIP} = \Delta T_{MIP} (TileB) \oplus \Delta T_{MIP} (TileA) = \Delta T_{MIP} \bullet \sqrt{2}$$

→ T3B time resolution for MIPs: ~ 800 ps (simple threshold method, further improvement by respecting intrinsic resolution possible)

- Test Arrangement D: Full Test Beam Setup 4 PicoScopes
 - External Trigger Input of PS: Scintillators
 - 14 Input Channels of PS:

14 Scintillator tiles of the T3B Timing Layer

CALICE Trigger using large 50x80cm Muon Beam

- Edge Timing given by sample above threshold (more sophisticated methods possible)

→Large trigger adds ~ 1.3 ns spread (not used in hadron Test Beam) (remember: All events are within 3 x 3 cm on the large trigger!)

1 PicoScope used in parallel for Muon Telescope \rightarrow only 10 channels available

Result: Stable behaviour on all channels: (1.6 ± 0.2) ns (further improvement in analysis possible)

Casablanca, 23.09.2010

Christian Soldner

SUMMARY

Summary

- Valuable experience from T3B commissioning run
 - Integration with CALICE Trigger proven, synchronisation works
 - Hardware mostly working (one channel broken, might be a short due to packaging)
 - Some oscillations observed on two of the four oscilloscopes, investigating
 - Some Muons to look at to develop analysis tools, quantify system performance
- Open question:
 - Spill structure for November test beam?
 - T3B DAQ not optimized for two spills that follow quickly one after the other, need ~ 5s between spills at the moment
 - Challenging: Constantly changing spill structure...

Frank Simon and Lars Weuste, whose commitment at CERN Commissioning and at Data Analysis

The CALICE AHCAL Group, whose permanent support

Make this experiment possible!

Casablanca, 23.09.2010

Christian Soldner