New electronic equipment for the MAPD (SiPM) devices

\author{

1. FADC
 2. HV
 3. LED generator
}

Casablanca
22-24 September 2010
Igor Tiapkin
JINR

afiojinteru

Croshtall
 57 V

Cross talk ch. 16-17 $\Delta / 1200=0,13 \pm 0,03 \%$

Multi-hits

Energy resolution ~ (2.9 0.1) \%/ $\sqrt{ } \mathrm{E}(\mathrm{GeV})$. Time resolution $\sim(8010)$ psec $/ \sqrt{ } \mathrm{E}(\mathrm{GeV})$.

> Fast data transfer
> Small cross-talk
$>$ Easy to build trigger
$>$ High time resolution

> High selectivity - noise suppression

PAULSCHERIEI ISSIITV

CHIN

The Domino Principle

"Time stretcher" $\mathrm{GHz} \rightarrow \mathrm{MHz}$

High Voltage Systems Company

HVSys core activity is development of custom designed equipment for scientific research. Main direction is multi-channel high voltage systems for powering of scientific equipment.

16-channel Base voltage cells

System bus

High Voltage Systems Company

$\boldsymbol{y}_{\mathrm{cM}}$	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

High Voltage Systems Company

| 1 | Range of max output voltage | Up to 250V |
| :---: | :---: | :---: | :---: |
| 2 | Range of output voltage regulation | Umin - Umax |
| 3 | Precision of output voltage regulation | 10 bit or 12 bit |
| 4 | Output voltages spread (channel from channel) | 1% |
| 5 | Stability of an output voltages | $0,005 \%$ |
| 6 | Temperature coefficient of an output voltage | 200 ppm/K |
| 7 | Maximal average output current | Up to 100 mkA |
| 8 | Self-diagnosis of the BV channel | Yes |
| 9 | Current measurements | Possible |
| 10 | System bus | (line flat cable |
| 11 | Max length of system bus | Up to 100 m |
| 12 | Number of cells per system bus | Up to 127 |
| 13 | Number of cells per system controller SC508 | 508 (8128 channels) |

High Voltage Selinsw mpo wiv comploler

回回

High Voltage Systems Company
$t\left({ }^{\circ} \mathrm{C}\right)$

Time (h)

High Voltage Systems Company

High Voltage Systems Company
$\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)_{30}$

A (arb.U.)
11000
9000

7000
$150 \mathrm{~V} / 4096=37 \mathrm{mv}-$ steering region 0-150
steering region 50-100-50V/4096 $=12 \mathrm{mv}$

High Voltage Systems Company

High Voltage Systems Company

High Voltage Systems Company

Easy to exchange SiPM Mechanic support for extra material \mathbf{c} be added (on request)SiPM

Single channel adjustable bias

GUI programmed in tcl

temperature controlled bias stabilization

X. HVSys APD HV controller. Cell=z								- - ${ }^{\text {x }}$
Last Updated: 14:11:50				$\begin{gathered} \text { TEMP (C) } \\ 25.92 \end{gathered}$	Temperature HV Generator compensation Ontoff			
Ramp U/D(V/s) 10					\pm Log to file			
Ch.	Set Voltage(V) 020C		T Compensated Set Voltage	Enable Chan.	Current Voltage(V)	R.feasured Current(nA)		$\begin{gathered} \mathrm{Kt} \\ (\mathrm{~V} / \mathrm{C}) \end{gathered}$
0	$75.4 *$	75.49	75.49	■	75.49		482	0
1	$0.00 \div$	0.00	0.00	」	0.00		2	0
2	$0.00 \div$	0.00	0.00	1	0.00		-2	0
3	$0.00 \div$	0	0.00	-	0.00		7	0
4	$0.00 \div$	0	0.00	」	0.00		-12	0
5	$0.00 \div$	0	0.00	1	0.00		-10	0
6	$0.00 \leqslant$	0	0.00	-	0.00		-10	0
7	$0.00 \div$	0	0.00	\square	0.00		-17	0

USB controlled LED pulser

Eie Setup Statistics Optiom Help

SiPm single photoelectron peak spectrum

Example study (I):

- Extract characteristic single photoelectron peak spectrum
- tune light intensity by varying the pulser amplitude
- extract SiPM gain for various bias voltages

SiPM response curve

Example study (II):

- Increase light intensity by varying the pulser amplitude - study SiPM response for various bias voltages

measurements taken by practicum students in our lab (low stat. / no errors)

Conclusions

- Several FE - DAQ boards was successfully tested during last years at the test beams. of CERN and DESY
- Boards with different ADC speed and resolution was developed.
- Cross-talk between neighbor channels is measured on the level of 0,1 0,2\%.
- Random coincidence of the noise signals even in the gate of 30 nsec is measured on the level of 0,02-0,3\%
- Time resolution up to 100 psec has been reached with the FADC board of 100 MHz frequency and 14 bit resolution. It is shown that this time resolution determined by the detector but not by the electronics channel.
- Several HV modules with different parameters has been developed.
- HV module with automatic compensation of the output voltage depending on temperature was developed and successfully tested.
- LED driver with internal stabilisation of the light signal has been developed and tested.

