NMLTA Protection System Update -Loss Monitors-

Arden Warner October 13th, 2010

Status of loss monitors

- Two FBLMs were designed at FNAL and manufactured by Bridgeport Instruments and Elgen Technology. Both prototypes installed at AO photo-injector.
- > Paddles designed to have ~ 40% less scintillator material than that used at DESY
- > Hamamatsu and ET Enterprise PMTs with comparable specifications
 - See properties in table below:

EJ208 Scintillator properties	Value
Disc time	
Rise time	1.0 ns
Scintillator Brightness	76 p.e./ MeV
Wavelength of max emission	435 nm
Detector sensitivity	7.0 pC/Mev
Decay time	3.3 ns
Density	1.023 g/cc
Light attenuation length 1/e	210 cm
Number of electrons	3.37/cm ³
PMT Specifications	
Rise time	3-5 ns
Gain (min)	2.7 x 10 ³
Supply voltage (max)	2000 volts
Sensitivity	0.1 – 200 A/lm

Fast Beam Loss Monitor Design (BI prototype)

Cost : Bridgeport Instruments 1 ea. \$2350 each 40 ea. \$1300 each

Fast Beam Loss Monitor Design (EL prototype)

2an

Cost : Elgen Tech 1 ea. \$1878 each 50 ea. \$1545 each

FBML Measurements (BI prototype)

10 bunches to radio-beam dump. Cross 6

FBLM Measurements (BI prototype)

Corresponding dark current background with no photoelectrons

FBML Measurements (BI prototype)

40 bunches, 400 pC, cross4 OTR inserted

FBLM Measurements (BI prototype)

Dark current background varies with machine tuning and 9cell on/off as expected

FBLM Measurements (Elgen prototype)

ET Enterprise PMT. No mumental shield and no iron

Lots of noise outside of rf pulse. The amount of required EMI and mu-mental shield can tested tested.

Cryogenic Ionization chamber

Type : Cryogenic beam loss monitors can be operate from inside the cryomodules from 5k to 350k.

Design Properties:

> Stainless steel vessel, 120 cm3 filled with He-gas.

> He-gas pressure of 1 bar (0.98 atm)

Sensitivity 1.9 pA/(Rad/hr)

Readout via current-to-frequency converter (1.9Hz/(Rad/hr))

>Range: up to 30 kRad/hr

>Pulses can be sent through long cables

Installation requirements:

- BNC feed through (-95 volts)
- Electrically isolated

Cryogenic Ionization chamber 5k - 350K

It is a helium-filled ionization chamber. It's current is proportional to the dose rate.
The signal current is processed by a current to frequency converter to achieve a wide dynamic range and quick response dose rate excursions.
All materials used are know to be radiation hard and suitable for operation at 5K.

• The electronics is self-contained and requires no computer to operate.

Cryogenic Loss Monitor operation

The chamber housing is held at negative potential and negative charge is collected on the center electrode. The HV is -95 V and is kept well below the minimum breakdown voltage of 156V in Helium.

The electronics uses a recycling integrator as a current to frequency converter with a wide dynamic range. The charge per pulse is 1.63pC or 238μ R at 1 atm (room temp) of He.

The recycling integrator consist of a charge integrating amplifier with a 0.50 pF capacitance followed by a discriminator which senses when the capacitor is fully charged.

The FPGA generates a fixed-width (1.2 μ s) discharge pulse with an amplitude of 3.3V. It connects to the amplifier input via a 13 M Ω resistor, creating a 254 nA discharge current

Cryogenic Loss Monitor proposed installation in CM2

Cryogenic Loss Monitor

Counter/timer show 630 counts = 150 mR

HTS installation

Arden Warner, FNAL

VME based

counter/Timer board

Conclusion on FBLM studies

Bridgeport Design

- > The FBLMs manufactured by Bridgeport Instruments are well constructed and show good response.
 - The Hamamatsu R6231 PMT is linear and stable but some systematic studies with AO beam conditions is needed.
 - Adequate shielding can be added to the design to reduce noise and shield from magnets. Provision was made in the design to include this.
 - A few minor modifications to accommodate the beam line can also be added.

Elgen Design

- > Shielding needs to be included to finalize
- PMT adequate but the assembly and connections were not done well.
- > Not happy with the construction and response.

Machine Protection System for NML

MPS Laser pulse control

• Block the Pockels cell based pulse kickers as long as the MPS input is in an alarm state.

• Enforce the limit on the number of bunches as given by the currently selected beam mode.

• Close the laser shutter on request of the MPS. This may happen when there is no valid operational mode or when some combination of loss monitors exceed thresholds which trigger a dump condition.