Towards an updated physics case: SUSY & other new Physics

ILD Meeting @ LAL May 24, 2011 J.List, DESY

Outline:

- Physics Case & DBD
- ILD and DBD Physics Chapter
- SUSY / Exotics
- How to continue?

Towards an updated physics case

- ... physics case?!
- heard lot of great news on detector technologies, detector integration, software baseline, benchmark analyses
- but the physics case has been made 10 years ago?!
- in principle: yes!
- but: LHC (and Tevatron!) are taking data and producing results by the hour → things start to change!
- => we have to react to this, and possibly fast!
 - → The DBD will have "Physics Chapter"!

The DBD Physics Chapter - Plan

- * 0 -- Intro: Jae Yu, Michael Peskin
- * 1 -- W and Z: Tim Barkow, Juergen Reuter
- * 2 -- 2-fermion: Yuan-Ning Gao, Maxim Perelstein
- * 3 -- top: Andrei Nomerotski, Andre Hoang
- * 4 -- SM Higgs: Keisuke Fujii, Heather Logan
- * 5 -- Extended Higgs: Klaus Desch, Shinya Kanemura
- * 6 -- SUSY + new spectroscopy: J.L., Howard Baer
- * 7 -- Cosmological connnection: Geraldine Servant, Tim Tait

Where will the contents come from?

- not the benchmarks! → will go into ILD / SiD parts
- input from "theorists":
 - on the "The latest model I invented will be great to study at the ILC"-level
 - on parameter determination strategies
 - → both highly welcome!
- but: the driving force needs to come from the hard core ILC community → ILD & SiD!
- for the physics case, the differences between the concepts are *not* substancial → here, we should be pulling the same rope (in the same direction ;-)

What we learned from LoIs

- no surprises w.r.t. TESLA/JLC fast simulation
 - THE exception: ZHH, but probably related to too optimistic fragmentation?
 - differences ILD/SiD: mostly in analysis technique, rarely in detector performance
- this is good news, since:
 - full simulation validated against testbeam data
 performance demonstrated, not "postulated"
 - much better understanding of beam-backgrounds, dead material, ...

What we learned from LoIs II

- analyses with full simulation take time!
- weren't able to produce enough background events

 → weights up to 5000
- channels selected to challenge the detectors don't give the full picture of the ILCs physics potential!
- Ex: Charginos / Neutralinos in Point 5:
 - only studied hadronic channels (WW/ZZ separation)
 - but we will of course also exploit the (semi-)leptonic channels!

Are the alternatives?

of course:

- parametric simulations from JLC / TESLA times:
 - Quicksim
 - Simdet
- fast simulation based on covariance matrices
 - LiCToy
 - SGV → talk by M. Berggren:
 - tuned to match ILD_00 full sim & rec
 - producing ILD DSTs
 - => can be used "mixed" with Mokka / Marlin:
 - signal + main bkg → Mokka
 - other backgrounds → SGV

What to study in Mokka

=> need to decide carefully which questions need to be answered in full simulation:

- benchmarks
- detailed reconstruction performance studies (esp. backgrounds, timing)
- technology comparisons
- (yet) unvalidated features: dE/dx....
- "difficult cases": ZHH....

A: CP, RP conserving, Neutralino LSP

- scenario with large part of electroweak sector accessible, a la SPS1a':
 - all possible measurements
 - exploiting different beam energies, threshold scans,
 polarisations → determine SUSY parameters
 - → partially done for Lol!
- scenario with smaller part of spectrum accessible
 - what can still be done?

B: Gravitino LSP

- for LoI: non-pointing photons from $\chi \rightarrow \gamma$ Gravitino
 - only SiW ECAL
 - now: compare to SciW ECAL?
- meta-stable staus:
 - anormalous dE/dx
 - late decays in calorimeter
 - → Simdet study by H.-U.Martyn.... needs updating!

C: CP violation

ongoing study → c.f. talk by M. Terwort

•

D: RPV SUSY

- bilinear RPV: study ongoing by B.Vormwald
 - not trivial to generate events
 - → close contact to authors of Spheno / Whizard

•

Beyond SUSY in the DBD

- little Higgs models → talk by E.Kato
- Large Extra Dimensions?
- Technicolor?
- Leptoquarks?
- Unparticles?

•

Here come your ideas,

So what now for ILD?

- message from JSB is very clear:
 ILD does not want to choose technologies at this stage.
- important now:
 - defend the physics case:
 - understand what LHC will and will not be able to do
 - re-evaluate ILC potential in view of new results
 - demonstrate that we have at least one technology which is feasible and meets requirements
 - => have to choose *something* for the next round of larger scale simulation & reconstruction!
 - ... what does this actually mean?

Simulation "use cases"

- new 1 TeV benchmarks:
 - in full simulation, with machine and important physics backgrounds
 - => rather large production → sw baseline
- dedicated subdetector technology comparisons
 - first step: study "reconstruction performance"
 - then: decide if something more is to be learned from a "physics performance" study
 - => smaller dedicated samples → not influenced by baseline choice!

Simulation "use cases" II

- concept feasibility studies:
 - main issue: forward pattern recognition in presence of background!
 - => problem is *software*, not mass production
 - → again independent of sw baseline
- physics case:
 - we are on this together!
 - technology choices, or even ILD / SiD difference should not matter here
 - wide range of contributions from theory calculations via fast sim to full sim
 - → independent of sw baseline choices

Conclusions

- in view of LHC, we have to re-state our physics case!
- needs joint effort from SiD, ILD, Theory and our experimental colleauges who signed the LoIs!
- it's our job to make the high level of understanding of our detector performance and of accelerator parameters available to the community at large
- collaborate with Theory and fitting groups on parameter scans, interpretation of LHC results, selecting models....
- the Physics Chapter working groups have been set-up,
 → but need to be filled with life
- we need to start the effort in order to get the community (back) on board!

- issues from LoI:
 - generator fixed, → talk from sw meeting
 - gammagamma event weights up to 5000
 also other backgrounds partially high weights
 - concentrated on detector challenging channels, not full physics potential
 - background not overlayed for most analyses
 - BeamCal treatment, crossing angle