Report from MDI/Integration Working Group

Karsten Buesser DESY

ILD Workshop 25. May 2011

Push-Pull

MDI Work Flow

MDI Work Flow

ILD and SiD Differences

SiD and ILD with or without a platform ?....

M. Oriunno

Trade offs

Trade off study

SiD on Platform

ILD without Platform

Mandatory requirements	SiD	ILD
Design Change Impact	None	High
Vibrations Amplification	Unkwon	Unkwon
		M. Oriunno 13

QD0 Support Models

ILD QD0 Support Vibration Analysis

K. Buesser 2010年 3月 29日 月曜日

Vibration Measurements at CMS Plug

Platform Vibration Amplification

Integrated Displacement (r.m.s.)

Marco's Conclusions

Conclusions

- Platforms are a technically acceptable solutions for the push pull, which preserves the respective design of the detectors and does not amplify the ground vibrations.
- The platforms must be designed according to a set of Functional Requirements, specifying the static and dynamic performances. These requirements will be defined by the detectors.
- The design and construction of the platforms becomes a task of the CFS group, which will develop the project along the requirements list and together with the detectors.

M. Oriunno

Lessons to learn...

Earthquake

- Belle detector after 3.11
 - Bell detector was rolled out from the beam line and fixed to the ground
 - 32 fixing bolts (M22) have been broken by the earthquake, and Belle detector moved 6 cm on the rail
- How should platforms be supported on the occasion of big earthquake?
 - Move with the ground?
 - Isolated from the ground?

Seismic isolation support for buildings

Platform Motion System

Report from MDI/Integration WG

Platform Motion System

Hall Design

Experimental Hall (RDR Design)

- Rather large (120m)
- Shafts above experiments
- Not enough space for detector maintenance in parking position
- Unnecessary shielding
 wall
- No service caverns for detectors

Hall Design Study

Alain Hervé, CLIC08 Workshop, 16 October 2008

• ILD Hall Design Study (A. Hervé et al.)

5

Detector in Beam Position

• NB: Optimised hall size

Detector Opening - Garage Position

Alcove needed for allowing access to subdetectors

• TPC removal needs ~6m opening

lr

İİĹ

 Hall roof span is a simple span

- Rock bolts provide the structural support
- Drip Ceiling provides a dry and clean space.
- Walls and floor use rock bolts for structural support, concrete lined.

May 2011 ILC - ILD

ILD Workshop 2011 LAL, Paris

7

ILC CFS / CLIC CES Studies for the Interaction Region :

- An action was given at the Geneva Linear Collider Meeting for CFS to develop a more in-depth civil engineering study of the IR

- Linear Collider IR meeting at CERN held on 16 February 2011

-Design Brief for external design specialists

-Kick-off meeting with ARUP is today

-Next steps

J.Osborne (CERN) for ILC CFS/ CLIC CES

1

Task 1 - The design of the underground concrete platforms required to transport each of the two Linear Collider Detectors on and off the beam-line position.

- Two platforms would be required, one for each detector.
- Load of each detector, excluding platforms, of approximately 14,000tons
- Intermediate supports determined by the preferred movement system.
- Platform movement on/off the beamline to be moved over a period of the order of five hours,
- Up to 20 movements per year during machine operation.
- Accelerations of the detector during movement to be limited to 0.5g
- Location of the platforms to within +/-1mm and +/-0.1 milli-rads of their target location relative to final focus quadrupole base slab.

ARUP's were asked to tender for 4 distinct tasks

Task 2 - A detailed study of the potential behaviour of the rock mass surrounding the experimental area during the estimated 20-year life span of the machine.

- Experience from other cavern rock related mass conditions should be taken into account e.g LHC.
- 2D and 3D effects to be assessed.
- The study should assume that the experimental area is to be built in CERN geology, in the Molasse Rock
- The long-term behaviour of the excavation

2d and 3d models will be developed for CLIC to do a "Time-dependant" state analysis.

Possible 2nd phase use of these models for II C lavouts/geology.

To get this study going, ARUP have prepared a list of questions including a 'brainstorming' proposal for the IR layout.

To be discussed this afternoon.....

For example, ARUP have made a 'brainstorming' proposal for the IR layout :

To be discussed this afternoon.....

Budget for this Linear Collider IR study :

• FNAL (Task 1) CERN (Task 2)

Some key decisions for ILC were resolved at Eugene meeting :

- Are both detectors using the "concrete" platform strategy : <u>Yes</u>
- Are the level of the platforms the same ?
- For the overall layout :
 - Gantry crane capacity in the experimental hall ?
 - Should shafts be directly over the cavern or offset ?
 - Self shielding detectors : <u>Yes for ILC</u>

• Design Criteria to be established at this meeting

13

Interaction Region Engineering Requirements

Push-Pull System Design Study (MDI CTG + BDS)

For DBD/TDR : Design Study for the Interaction Region; Push-Pull System for the II by the MDI-CTG + A.Seryi (BDS) , July 2010

Tasks (Work Plan)

The following list summarises the major tasks of the working plan.

- 1. Design of the detector motion system; study of its vibration properties in simulation and experiment.
- 2. Design of the IR underground hall for push-pull, including facilities and services for the operation of the detectors, radiation shields, seismic issues, impact of safety rules.
- 3. Optimisation of the detector integration and its impact on assembly procedures, magnetic and radiation shielding, vibration sources.
- 4. Design of detector services supplies for push-pull (data and HV cables, cryogenics).
- 5. Design and prototype of the final doublet quadrupoles and verification of their stability.
- 6. Design of alignment system for the final doublet magnets and the inner detector components, including the design of a laser interferometer system.
- 7. Study on IR vacuum design, including vacuum requirements and design of quick connection valves.
- 8. Study of intra-train feedback systems in a push-pull system.

Push-Pull System Design Study (MDI CTG + BDS)

 Table 1
 Milestones

Date	Milestone
Summer 2010	Finalisation of work plan, implementation of additional resources
October 2010	Linear Collider Workshop at CERN
March 2011	Linear Collider Workshop (ALCPG11), Eugene
Spring 2011	First draft of IR engineering specifications
Fall 2012	Finalisation of IR engineering specifications
End of 2012	Finalisation of ILC Technical Design Report and the Detailed Baseline Description

Functional Requirements for Platform (SID)

SiD Platform Functional Requirements

SiD nominal mass: Barrel 5000 T; (each) Door 2500 T

Dimensions:

Z = 20.0 mX = 20.0 m Delta Y = 9 m (Top of Platform to beamline)

Positioning Tolerance on beamline

Consider points Z=+-max, X=0. Position to + 1mm wrt references in X,Y,Z Consider points Z=+-max, X=+-max: Position to +- 1 wrt references in Y.

Static Deformations: <+-2 mm

Vibration Transfer Function from ground : Amplification < 1.5 between 1 and 100 Hz.

Seismic stability: Appropriate for selected site. (Beamline must be designed with sufficient compliance that VXD will survive)

Functional Requirements for Platform (SID)

SiD Platform Functional Requirements

SiD nominal mass: Barrel 5000 T; (each) Door 2500 T

Dimensions:

Z = 20.0 mX = 20.0 m Delta Y = 9 m (Top of Platform to beamline)

Positioning Tolerance on beamline

Consider points Z=+-max, X=0. Position to + 1mm wrt references in X,Y,Z Consider points Z=+-max, X=+-max: Position to +- 1 wrt references in Y.

Static Deformations: <+-2 mm

Vibration Transfer Function from ground : Amplification < 1.5 between 1 and 100 Hz.

Seismic stability: Appropriate for selected site. (Beamline must be designed with sufficient compliance that VXD will survive)

Engineering Specs (T. Tauchi, Draft)

Draft of "engineering specifications", 20 May 2011

Engineering Specifications (2) : Experimetnal Hall	RDR	SiD	ILD	ILD in Mtn. site
Parameters that de	fine the underground	hall volume		
IR Hall Area(m); (W x L)	25x120			
Beam height above IR hall floor (m)	8.6	9(7.5)	8(9)	9
IR Hall Crane Maximum Hook Height Needed(m)	20.5	5m above top of detector	20.5	20.5
Largest Item to Lift in IR Hall (weight and dimensions)	400t	100t PACMAN	55t, 3x3x1.5m	400t
IR Hall Crane	400t+2*20t	100t/10t	80t	400t
IR Hall Crane Clearance Above Hook to the roof (m)	14.5(includes arch)		6	
Survice caverns(m); (W x L xH)	none			15x25x11
Resulted total size of the collider hall (W x L x H)	25x120x39	28x48x30		
Parameters that define dimens	sions of the IR hall sh	aft and the shaft cro	ine	
Largest Item; Heaviest item to Lower Through IR Shaft (weight and dimensions)	9x16m, 2000t	600t	3411t, 15.7x8m (ring 2.7m thick)	-
IR Shaft Size : diameter(m)	16	9	16	-
IR shaft fixed surface gantry crane. If rented, duration	1.5 years	1.5 years	1.5 years	-
Surface hall crane should serve IR shaft	Yes	Yes	Yes	-
Other shafts near IR hall for access	No	Yes	No	-
Elevator and stares in collider hall shaft	Yes	?	Yes	
Size of access tunnel at Mtn. site (W x H, m)	-	-	-	11x11, 10.2x7.2
Parameters that define dimension	s of the surface assen	nbly building and its	crane	
Surface Assembly Building Area ((W x L, m)	25 x 100		30x60	27x100
Largest Item to Lift in SurfAsm. Bldg. (weight and dimensions)	400t	70t	180t	180t
Surface Assembly Crane	400t+2*20t	100t/10t	2x80t	400t
SurfAsm. Crane Maximum Hook Height Needed(m)	18	20	19	25
SurfAsm. Crane Clearance Above Hook to the roof (m)	7		5m to ceiling	
Resulted volume of surface assembly building (W x L x H, m)	25 x 100 x 25		30x60x24	
Parameters that define crane	access area and clea	rance around detect	or	
SurfAsm. crane accessible area (needed) / available (W x L, m)	20 x 102		28x56	
IR hall crane accessible area (needed) / available (W x L, m)	22 x 98		28x41	18x39
Maximum Detector Height(m)		16.15	15.74	15.74
Detector Width (m)		18.53(14.334)	15.665	15.665
Minimum Detector Clearance (W x L H, m)			15.67x13.26x15.74	15.67x13.26x15.74
FILL IN OTHER IMPORTAL	NT PARAMETERS W	HICH ARE MISSIN	G	
Electronic hut size			18x9x10m	
Electronic hut location				
When the electronic hut is installed underground				

2011年 5月 20日 金曜日

Detailed Design Documentation for the DBD

Technical Design Documentation for the ILC-TDR

TDD, TDR and ILC-EDMS

Technical Design Report (TDR) summarizes TDD for publication

Technical Design Documentation (TDD) captures entire design efforts, results & rationale

Bit of the second sec	 A constraint of the state of th				Position Source works Position Source works Research 30 Collair Joint Colling Collair Joint Colling	
Parameters	Specifications	Cost Estimation	Calculations	CAD Models D	esign Summa	ry

ILC-EDMS <u>organizes</u> the Technical Design Documentation, providing structure, traceability, version & configuration mgt., and change control

Benno List | Collaborative Engineering Supported by EDMS | 20.4.2011 | Page 2

• We need the same for ILD, the DBD cannot contain it all!

ILD in EDMS

ILD Top Level WBS Node

• ILD Work Breakdown Structure exists already!

Benno List | Collaborative Engineering Supported by EDMS | 20.4.2011 | Page 12

ILD and EDMS

elated Item	S					Rel	ateo	l Items	5			
🚳 Item Information - Mozilla Firefox										镾	2- I	×
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks	To	ols <u>H</u> elp										
🜲 🗼 🗸 🔁 🔕 🏫 💽 desy.d	ie h	ttps://teamcenter.desy.de/TC70	PRD/controlle	er/home			Ŷ	God	ogle			
Most Visited - PDG SPIRES	~					enorting 🔅 Calendar				Anenda		
											<u> </u>	_
Z Fukushi III Regi C iten	TI I	. 🛪 📋 Item Infor 🛃 Docun	ne 🛃 Do	cume Ir Aktue	ile I	Sear	ecnnisc.	💽 Kernscr	1 <u>Co</u> (S	Home Ex	it DESY	Ť
						Advanced S	earch		<u> </u>	Benno Li	st	_
Main Menu Classification	C	heck Out Submit Item F	Reports	Jokmark H	istory	More Actions		-				?
Select View:	60	3										
	s	Generic Part , D0000000052	3907,A,4,1, I roperties Re	tem Info : Relations	, ₁s s ÌAs	signment T Classificatio	on TRevie	ewer/Approver	All Versio	ns T Aco	cess	
E 🦃 ILD					Work	Access Scheme in Use	Item	Last Modified	Last	Language	Superse	▲ ed
		EDMS-ID	Name ^て	Description	Status		Туре	by	Update	Language	Superse	
GP Forward Region	0	⊟ Ø D0000000523907,A,4,1	ILD		Working (in ∀ault)	Project: ILC_ILD_WBS	Assembly	Buesser_Karsten	01.03.2011 16:36:15		False	=
E P LD Documentation		Item contained by										
Inner Region	F	Bookmark conections Attaches										
		As Description										
GP Liaison Office			ILC Contacts	ILC contact people and	Working	Team: ILC ILD Team		Eucker Silke	04.06.2010	English	False	
Machine Detector Interface		D0000000913605 A 1 1	ILD0dimensions-	ILD0dimensions-	Released	Project: ILD. Integration		List Benno	01.04.2011	English	False	
Gouter Tracking		D0000000313603,A,1,1	weigth130209	weigth130209 Definition of the ILD	Releaseu	Project. IED_Integration		LISI_Denno	13:09:59	English	raise	
Physics & Optimization				Definition of the ILD								
GP Project Management	0		Definition of the ILD reference	updated version	Released	Project: ILD_Integration		List_Benno	18.04.2011	English	False	•
E Ge Solenoid	1		detector	ILC global parameters					14.07.42			
Ger System Tests & R&D			LD						13 10 2010			
+ se Yoke			Workplan-LCWS 2010	LCWS10.pdf	Working	Team: ILC_ILD_Team		Eucker_Silke	12:29:53	English	False	
				ILC International								
Svstem Status:		D0000000913695,A,1,1	ILD - Letter of Intent	Detector Letter of	Released	Project: ILC_ILD_WBS		Buesser_Karsten	01.03.2011 16:39:17	English	False	-
ok .				2010								
Done	0		ILD Coordinate System Definition	ILD Coordinate System Definition (derived from ILD	Working	Team: ILC_ILD_Team		Buesser_Karsten	25.06.2010 13:19:07	English	False	•
		🗆 🕅 Has Design		predecessor LDC)								
			ILD Placeholder			Team:			02.07.2010			
			Model		Working	ILD_CAD_Integration_Team	Assembly	Welle_Norbert	13:48:34		False	
			ILD detector simulation model	ILD detector as implemented in the Mokka simulation	Working	Team: ILD_Physics- and-Optimization_Team	Assembly	List_Benno	08.04.2011 09:50:10		False	
			ILD Model	STEP import from ILD_SM4_05-04-11.stp; Author: Matthieu Jore, LAL	Working	Team: ILD_CAD_Integration_Team	Assembly	Welle_Norbert	12.04.2011 16:25:54		False	
		🗉 🎁 Has Fabrication Part										
		🗉 📁 Is Realized As										2
		🗉 🎁 Is used by Generic Part										3
		🗉 🎁 Uses Generic Parts										

And there is already information stored!

Parameter Documents in EDMS

Important Documents: Parameter Tables

ILD0dimensions-weigth130209: D0000000913605

- > Definition of the ILD reference detector: D0000000913635
- Both taken from ILD Wiki pages
- If I had a Wiki password, I would have put links to EDMS into Wiki

Definition of the ILD reference detector ILD Joint steering board, September 21, 2008 (updated version: November 13, 2008 F. Gaede)

1. Introduction

1. Introduction hute following document the ILD detector is defined, as discussed on the second ILD macking in Cambridge, UK, Sprumber 2008. The detector defined is the so-called reference electron for ILD, which has the following mughic stame: The overall dimensions and main features of the detector are defines as a basis for the forther ovalation of ILD. They will be used for the LOIM 2009. The details of the detector are defined gainarily for the purpose of performance entodies. This detector will be implemented in the ILD insulation informer (MOEKA and hyper) and will be used for the LOP. (MCREA and Appler) and wall be used for thure performance studies. This detector wall be used for any large scab. Monte Carbo punduction frommove an. As much as possible the choice of permetters is based on studies which were parsented at Combridge. However, in many cases studies have either next yet beer finished, or are still in comclosive. De cisions them in these cases are driven by th desire to define one detector. They may change later, once some information is wallable, or better reconstruction and/or analysis to changes are been possible we have tried to define a virtual detector

mance, but which does not define a specific tech does not mean that ILD has chosen this technolo options. This refers to add d, depending primarily on the wanted performance, and p optimization results

in many cases we have not yet chosen a specific technology, but fo llow more t ion. These solutions currently are all considered with equal weight, and achieving more R&D results on all of them is considered of highest priority. During the process leading up to the LOI we will continue to evaluate this, and ans we will describe in the LOI any different o

2. Basic Parameters The following table shows the main parameters of ILD_1:

Coil		
Rmin	3440	(Mokka : coill and cryostat modeled as one Altube with 750 thickness)
Rmax	4190	
Z	3872	

Parameter lists

Benno List | Collaborative Engineering Supported by EDMS | 20.4.2011 | Page 14

Detector Models in EDMS

Available CAD Models for ILD in EDMS

- > D0000000872433: Placeholder model: Still a very preliminary version
- D0000000989043: Engineering model from Matthieu → will be updated
- D0000000952125: Mokka simulation model ILD_01_pre01 → the plan is to update this model, as new Mokka pre-releases become available

 \rightarrow Also available as 3D-PDF (but veeeeeeeery slow, because of too much detail in SIT/SET/ETD subdetectors)

It is possible that you cannot access (some) of the models, until they have been released

Conclusion

- The MDI work has become a friendly collaboration between detector concepts, ILC-CFS, ILC-BDS and CLIC!
- The engineering requirements for the interaction region are being defined
- Many open issues are identified
- Unfortunately the work is resources-driven not task-driven
- We should make sure that the "ILD Legacy" is documented properly so that it can be used whenever, whereever and whatever TeV lepton collider will be built