

Potential of high granularity

Manqi RUAN

Laboratoire Leprince-Ringuet (LLR) Ecole polytechnique 91128, Palaiseau

Outline

- Starting point: SDHCAL @ Pandora with default setting
- Hints to improve:
 - Utilize semi digital information
 - Better pattern recognition: MST & Hough
 - Shower reconstruction: Arbor algorithm
 - Cleaning
 - Measurement: Fractal Dimension
 - PID
 - Energy Estimation
- Summary

Reference: charge spectrum of 40GeV Pion after digitization with 1mm cell information. More details: https://indico.cern.ch/contributionDisplay.py?sessionId=5&contribId=28&confId=136864

Thresholds (equalize statistics of three kinds of visible hits): 1^{st} , 0.8 pC ~ 0.5mip; 2^{nd} , 2.11pC ~ 1.32 mips; 3^{rd} , 4.56pC ~ 2.84 mips. ILD @ Orsay

K0 reconstructed with PandoraPFA at full detector (R. Han) SDHCAL Vs AHCAL: better linearity & better resolution @ high energy, worse resolution @ low energy

On going study: Neutral Network energy estimation with Semi-Digital information 5

Minimal Spanning Tree

Work from G. Grenier, Guillaume Garcia, Daniel Förster, Loïc Cousin.

Hough Transform (HT)

Hough Transform (Imad & Yohan): MIP tagging in Hadronic shower, to be used on in-situ Calibration, alignments, efficiency monitoring...

Arbor: to reconstruct shower as a tree

 Valid principle + many new ideas (Original idea from Henri Videau, in hadronic shower reconstruction @ ALEPH) 23/05/2011
ILD @ Orsay

Arbor: Potential

- Shower separation
- MIP tagging & Branch Reconstruction
 - In situ Calibration/Stability monitoring
 - Kink & Pre interaction tagging
 - Better linking
 - Calo Tracks:
 - Kalman Filter ~ Energy Estimation ~ Leakage correction
 - Better balance the EM/Had hits

Alice Shower fractal dimension: principle

Shower particle: to interact or not

shower ~ self similar (Mandelbrot Set)

Measure shower Fractal Dimension (FD) at high granularity calorimeter

- Varying scale by grouping neighbouring cells
- Count Number of hits at different scale (define RNx = N1mm/Nxmm)

Shower: Self Similar

N_{1mm}/N_x

- Characteristic constant based on energy/PID:
 - $D = \langle InRN_a/In(a) \rangle$
 - Global parameter based on local density
 - Cell Sizes: 2 10, 20, 30, 50, 60, 90, 120, 150mm.
 - Samples: Particles shot directly to GRPC DHCAL with only B Field
- Be observed within
 - Low scale: minimal interaction energy & sensor layer thickness (1.2mm)
 - High scale: fully containment ~ 1 hits per layer

Potential tool for PID

FD together with other info (Nhits): Clear separation at different scales

Remark: Energy dependent Cuts, easier for charged particles

1mm	e+	u	h
e+	998	0	2
u	1	994	5
h	15	14	971

10mm	e+	u	h
e+	1000	0	0
u	0	995	5
h	17	14	969

30mm	e+	u	h
e+	1000	0	0
u	0	996	4
h	18	11	971

23/05/2011

Calorimeter for ILC

FD @ different size

Extreme Cases: Pion

- Pion: MIP, Pion decay;
- EM interaction (pi + N = P + pi0); partially identified by interaction point tagging 23/05/2011 ILD @ Orsay 15

Together with Nhit information: to identify Muon radiation & String noise...

ILD @ Orsay

Noise cleaning

String Noise: Typical in gaseous detector: charged particle tripped In the gas layer (display of 1mm hits Information)

Roughly improve 5% - 10% on Energy Resolution by Cleaning 23/05/2011 ILD @ Orsay

σ/M: Large cell better at low energy & Smaller cell at high energy.
Linearity: Better at 2 – 5 mm, stronger saturation effects at larger cell...
Naively: 5mm seems a nice choice...

ILD @ Orsay

FD for Energy Estimation

• For example: Compensation based on the correlation of NH_30mm & FD1mm:

E = a * NH_30 + b * FD ~ 30%/sqrt(E)! But...

- Correlation coefficient depending on Energy: b ~ 0.0266*E. To measure cluster energy of charged particle (with track info): check matching
- A set of energy independent (LO) estimator: $E = a' * NH_x/(1 FD*b')$

Hand put Energy Estimator with FD: NH10/(1-0.65*FD10) Energy resolution improved at high energy: ~ saturation effect correction Linearity improved: closed to 5mm Cell

Summary

- SDHCAL: ~ AHCAL with default AHCAL-optimized setting at PandoraPFA
- Huge potential to improve:
 - SDHCAL: Properly using 3 thresholds
 - Noise Cleaning
 - Pattern recognition at high granular: MST & Hough
 - Arbor:
 - Better separation, identification
 - Energy Estimation, Leakage correction
 - Fractal Dimension:
 - Promising PID
 - linking check & energy estimation
 - Not fully investigated...
 - Your dreamed but never realised algorithms

Special Thanks to ...

Back Up Slides

8 • DRUID, RunNum = 0, EventNum = 8 в в Count 1mm hits inside . . Ð (neighbour to) 10mm cell... -----₩₽ ₽ В -Digitized hit colour to charge: ~ æ ¶, B 1.5 - 1.6pC/mip -₽ чы: -**4** • H . E ₽ Ð • F æ Щр. .8. • 2 ₽ ъ and and В -• 8 اھ ъ

Calibration Constant

- Divided PFOs into Charged, Gamma and Neutral Hadrons: Calibration Constant Tuned to Satisfy Correlation Coefficient ~ 1: 1 hit = 150MeV
- Preliminary Digitization: provide overall efficiency ~ 98%

SW compensation with MST

Potential tool for PID

Handput Cut on Calo info @ 1mm Cell

	e+	U	h
e+	998	0	2
u	1	994	5
h	15	14	971

Characteristic Parameter for PID: to be used together with other information.

Correlation with NHits_1mm

69

EM/MIP @ hadronic shower

Hadronic Shower = MIPs + EM core (*leaves?*)

DRUID, RunNum = 0, EventNum = 12

30

mm Cell Size)

- MIPs: loose ~ smaller Fractal Dimension • EM: compact ~ large Fractal Dimension
- EM/MIP Ratio/Correlation changes at different scale
- Possibility & method of identify EM/MIP at reconstruction?

Hadronic shower: EM/MIP @ different Scale

23/05/2011

Energy Estimator: NH $\mathcal{E}\mathcal{M} \cong \mathcal{C}\mathcal{C}^*$ NH Had: $\mathbf{CC} = \mathbf{1} \sim \text{total hits}$

Hadronic shower: EM/MIP @ different Scale

60

Calorimeter for ILC