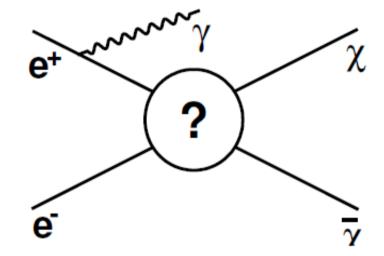
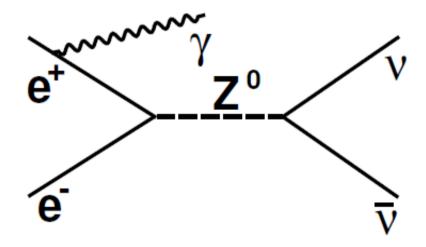

Results from the model-independent WIMP analysis

ILD Meeting @ LAL
May 24, 2011
J.List
on behalf of C.Bartels

Outline:

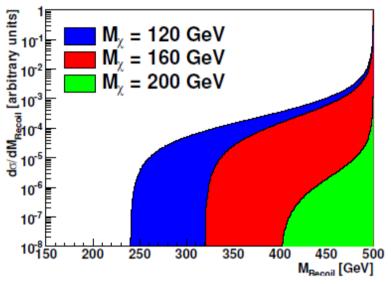
- Analysis Principle
- Software & Event Selection
- Results:
 - mass measurement
 - cross-section measurement
- Summary

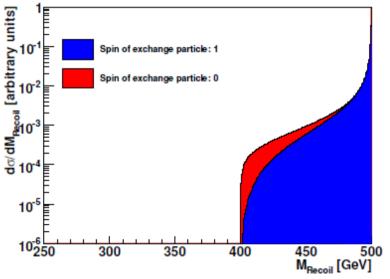

Model-indpendent WIMPs


study:

- sensitivity
- mass resolution
- benefits of beam polarisation

using:


- ► WIMP pair production with ISR: $e^+e^- \rightarrow \chi \bar{\chi} \gamma$
- ▶ main background process: $e^+e^- \rightarrow \nu \bar{\nu} \gamma$



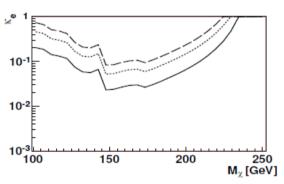
Analysis Principle

- measure photon's energy and polar angle as precise as possible
- energy / recoil mass give sensitivity to
 - observe or exclude this process
 - measure mass
 - maybe get a clue on dominating partial wave in WIMP annihilation?

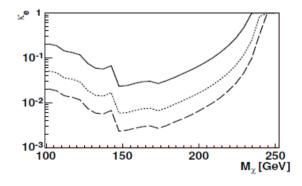
What has been shown before


x-section fixed by relic-density → branching fraction to e⁺e⁻?

Case 1: P-wave (J=1),
$$S_{\chi} = 1$$
 WIMP

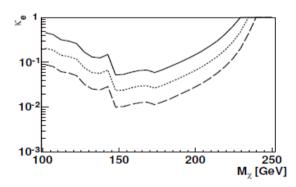

Polarisation:

- ► full line: unpolarised beams
- dotted line: e^- only $(P_{e^-} = 0.8)$
- ▶ dashed line: additional e^+ ($P_{e^+} = 0.6$)

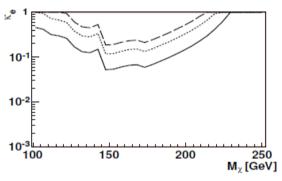

coupling: P & H conserving

coupling: e_I^-/e_R^+

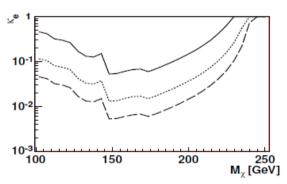
coupling: e_R^-/e_L^+


What has been shown before

Case 2: P-wave (J=1), $S_{\chi} = \frac{1}{2}$ WIMP


Polarisation:

- ▶ full line: unpolarised beams
- dotted line: e^- only $(P_{e^-} = 0.8)$
- ▶ dashed line: additional e^+ ($P_{e^+} = 0.6$)


coupling: P & H conserving

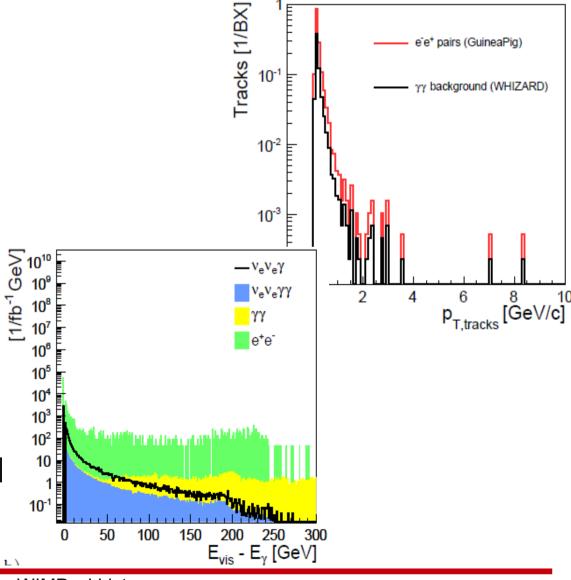
coupling: e_L^-/e_R^+

coupling: e_R^-/e_L^+

=> accessable at ILC down to κ_e ≈ few percent

Generation, Simulation, Reconstruction and all that

Monte Carlo

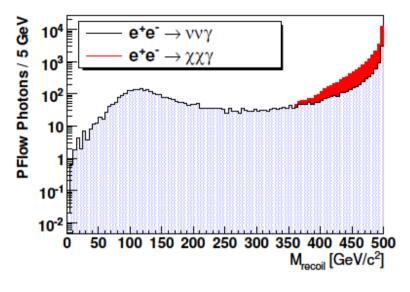

- ILD_00 SM DSTs at 500 GeV
- ▶ signal: reweighting of $\nu\nu\gamma$ process as function of WIMP mass, spin, annihilation partial wave, κ_e = BR($\chi\chi\to e^+e^-$)

Event reconstruction

- Particle Flow: Pandora algorithm
- require at least one photon with
 - $E_{\gamma} > 10 \text{ GeV}$
 - $|\cos(\theta_{\gamma})| < 0.99$
 - for resolution studies: angular match to generated photon
- no tracks

Event Selection in presence of backgrounds

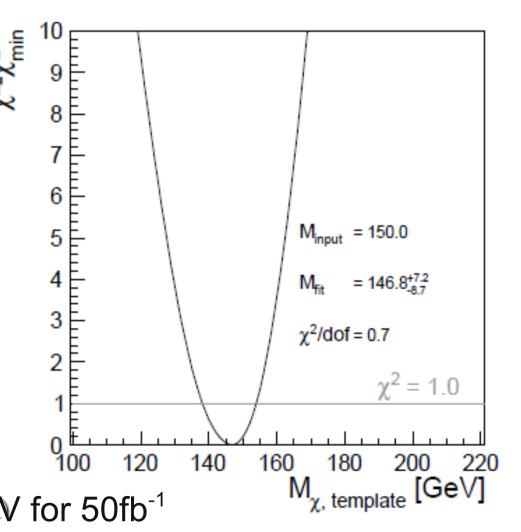
- for Lol: veto any additional activity in detector
- new: cuts stable against beam background:
 - no track withp_T > 3 GeV
 - $_{-}$ $E_{vis} E_{v} < 20 \text{ GeV}$
 - no tag in BeamCal


Cut flow (1 fb⁻¹)

irreducible!

$(P_{e^-}; P_{e^+}) = (0.0; .0.0)$					
Process	simulated	signal def.	$p_{T,track}$	$E_{vis} - E_{\gamma}$	BeamCal tag
ννγ 📕	8101.85	4795.46	4692.25	4429.18	4356.12
$\nu\nu\gamma\gamma$	613.27	344.31	325.44	238.68	228.58
$\nu\nu\gamma\gamma\gamma$	45.32	25.37	23.19	11.82	11.05
$\gamma\gamma$	6497.38	577.76	456.27	60.91	5.77
$\gamma\gamma\gamma$	1079.35	149.97	112.72	4.65	0.10
$\gamma\gamma\gamma\gamma$	97.08	19.50	14.65	0.15	0.03
Bhabha	17383825.0	425800.0	94305.9	71375.4	901.7

High background analysis → systematics will be important!


Mass determination

$$M_{recoil}^2 = s - 2\sqrt{s}E_{\gamma}$$

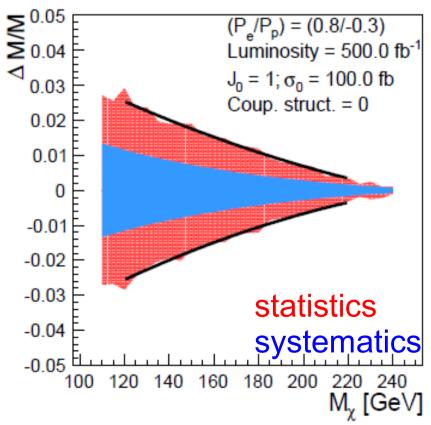
Example: M = 150 GeV, dom. partial wave J = 1

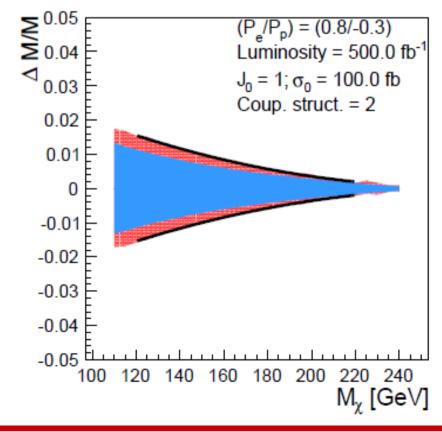
$$=>$$
 M_{fit} = 146.8^{+7.2}_{-8.7} GeV for 50fb⁻¹

Mass resolutions for 500 fb⁻¹

• statistics:

0.3 %4.7 % depending on mass, coupling structure and polarisation

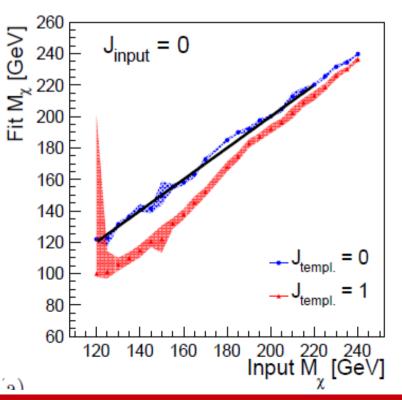

"Equal"	$\Delta M/M$ [%]				
Mass	$(P_{e^-}; P_{e^+})$				
	(0.0/0.0)	(0.8/0.0)	(0.8/-0.3)	(0.8/-0.6)	
120	4.7	2.5	3.2	3.4	
150	3.4	1.8	2.6	2.7	
180	2.2	1.2	1.9	2.0	
210	0.9	0.5	1.3	1.3	
"Helicity"	$\Delta M/M$ [%]				
Mass	$(P_{e^-}; P_{e^+})$				
	(0.0/0.0)	(0.8/0.0)	(0.8/-0.3)	(0.8/-0.6)	
120	4.5	2.5	2.5	2.2	
150	3.2	1.8	2.0	1.8	
180	2.1	1.2	1.5	1.3	
210	0.8	0.5	1.0	0.9	
"Anti-SM"	$\Delta M/M$ [%]				
Mass	$(P_{e^-}; P_{e^+})$				
	(0.0/0.0)	(0.8/0.0)	(0.8/-0.3)	(0.8/-0.6)	
120	4.5	1.4	1.3	1.1	
150	3.3	1.0	1.0	0.9	
180	2.0	0.6	0.8	0.7	
210	0.8	0.3	0.5	0.4	

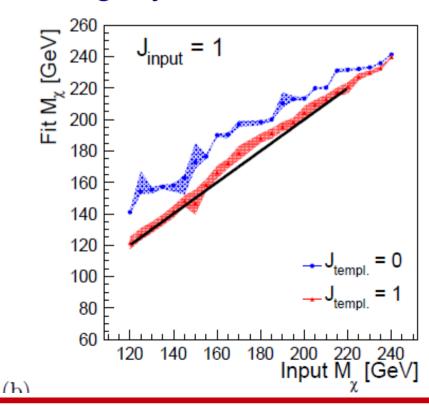

What about Systematics?

• systematics:

- mean beam energy: monitor from radiative return peak
- shape of E_{beam}: influence estimated from RDR vs SB2009

→ 2.5% (@ 120 GeV)....0.1% (@ 240 GeV)





Can we also determine the dominant partial wave?

Wrong J causes shift in mass, but no worse χ^2 ??? \rightarrow way too little MC statistics at kinematic edge, instead sensitive to x-section at high M

→ with more MC: resolve ambiguity, detemine J

Cross-sections

- Measure production cross-section for different beam polarisation combinations
 - → figure out helicity structure of SM-WIMP-interaction!
- want to know: σ_{LL} , σ_{LR} , σ_{RR} , σ_{RL} ,
- measure: σ_{1} , σ_{1} , σ_{1} , σ_{1} with e.g. $|P(e^+,e^-)| = 30\%$, 80%
- σ , σ_{\perp} are less interesting for other studies
 - => assume

- 200 fb⁻¹ with $(+|P_{e^-}|;-|P_{e^+}|)$
- 200 fb⁻¹ with $(-|P_{e^-}|; +|P_{e^+}|)$
- 50 fb⁻¹ with $(+|P_{e^-}|;+|P_{e^+}|)$
- 50 fb⁻¹ with $(-|P_{e^-}|; -|P_{e^+}|)$

Systematics for cross-section measurement

calculate σ and statistical error from

$$\begin{split} \sigma_{P_{e^{-}}P_{e^{+}}} &= \frac{N_{D^{-}} < N_{B} >}{\mathcal{L} \times \epsilon} & \Delta \sigma_{P_{e^{-}}P_{e^{+}}} &= \frac{\sqrt{N_{D}}}{\mathcal{L} \times \epsilon} \\ &= \frac{N_{D}}{\mathcal{L} \times \epsilon} - \sigma_{bg} & \text{since S and B indistinguishable} \\ &\text{on event by event basis!} \end{split}$$

• => systematics:
$$\delta\sigma_{P_e-P_{e^+}}^2 = \delta\sigma_{bg}^2 + \frac{\sigma_{P_e-P_{e^+}}^2}{\epsilon^2}\delta\epsilon^2 + \frac{\sigma_{P_e-P_{e^+}}^2}{\mathcal{L}^2}\delta\mathcal{L}^2$$

Dominated by knowledge of polarisation!

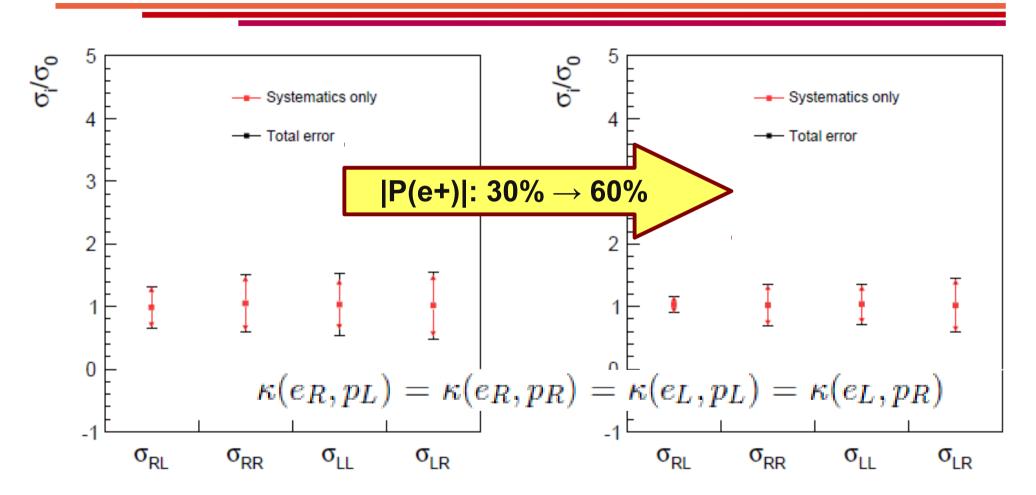
14

Parameter	value	error on σ [fb]
$\delta P/P$	$0.25\% \ (0.1\%)$	8.75 (3.50)
$\delta\epsilon/\epsilon$	1.27%	1.29
$\delta \mathcal{L}/\mathcal{L}$	0.01%	0.01
Total		8.84 (3.73)

Systematics for cross-section measurement

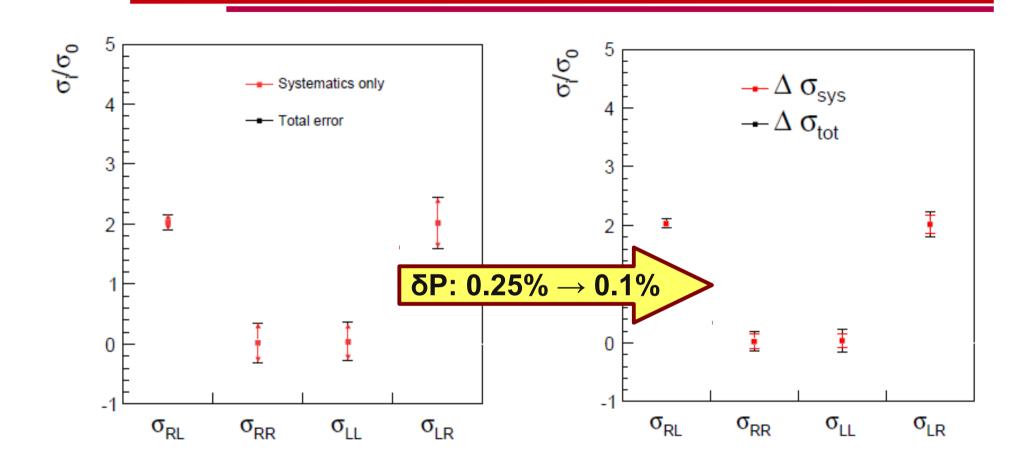
calculate σ and statistical error from

$$\begin{split} \sigma_{P_{e^{-}}P_{e^{+}}} &= \frac{N_{D^{-}} < N_{B} >}{\mathcal{L} \times \epsilon} & \Delta \sigma_{P_{e^{-}}P_{e^{+}}} &= \frac{\sqrt{N_{D}}}{\mathcal{L} \times \epsilon} \\ &= \frac{N_{D}}{\mathcal{L} \times \epsilon} - \sigma_{bg} & \text{since S and B indistinguishable} \\ &\text{on event by event basis!} \end{split}$$


$$\bullet \ \, => \text{systematics:} \quad \delta \sigma_{P_e-P_{e^+}}^2 = \delta \sigma_{bg}^2 + \frac{\sigma_{P_e-P_{e^+}}^2}{\epsilon^2} \delta \epsilon^2 + \frac{\sigma_{P_e-P_{e^+}}^2}{\mathcal{L}^2} \delta \mathcal{L}^2$$

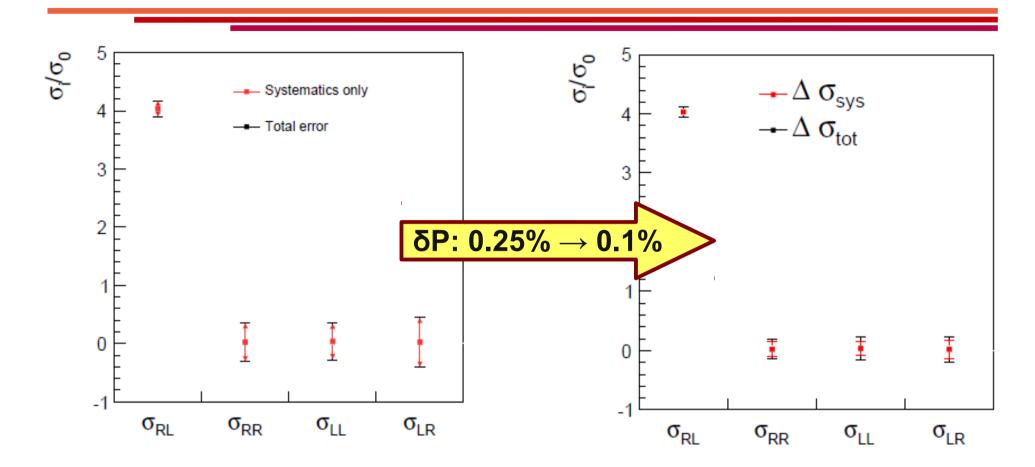
Dominated by knowledge of polarisation!

15


$(P_{e^-}; P_{e^+})$	σ [fb]	\pm stat. [fb]	\pm sys. [fb]	total error [fb]
(+0.8; -0.3)	101.3	3.4	8.8	9.5
(-0.8; +0.3)	102.3	8.2	18.2	20.0
(+0.8; +0.3)	102.9	7.7	16.2	17.9
(-0.8; -0.3)	102.6	12.7	12.1	17.5

Extrapolation to σ_{LL} , σ_{LR} , σ_{RR} , σ_{RL}

- systematically limited by polarisation uncertainty for background subtraction
 - \rightarrow P(e+)|: 30% \rightarrow 60% doesn't change much.....


...but δP : 0.25% \rightarrow 0.1% does!

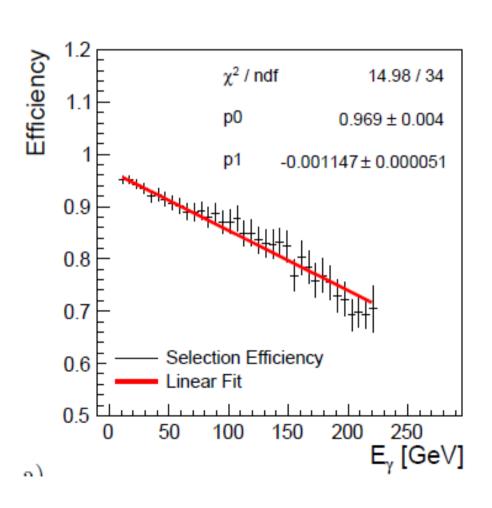
"Helicity & Parity conserving" scenario

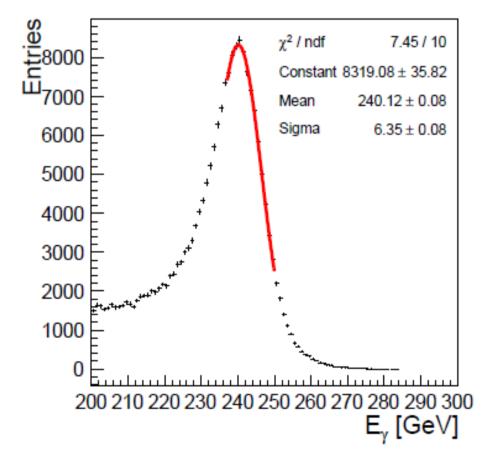
$$\kappa(e_R, p_L) = \kappa(e_L, p_R); \quad \kappa(e_R, p_R) = \kappa(e_L, p_L) = 0$$

...but δP : 0.25% \rightarrow 0.1% does!

"Anti-SM" scenario

$$\kappa(e_R, p_L); \kappa(e_R, p_R) = \kappa(e_L, p_L) = \kappa(e_L, p_R) = 0$$


18


Summary

- A generic WIMP compatible with observed relic density can be observed at the ILC up to M=240 GeV if BR(χχ → ee) is at least few percent
- mitigated effects of machine bkg / γγ→hadrons
- included systematics from selection efficiency, beam energy spectrum, luminosity & polarisation
- mass measurement to typically O(1GeV)
- helicity structure of cross-section can be determined
- Last missing piece: determination of dominant partial wave currently limited by MC statistics → can be fixed....

BACKUP

Efficiency & Rad. Return

