Improvements in jet/flavor reconstruction and its application to Higgs Self Coupling analysis

Taikan Suehara, Tomohiko Tanabe (The Univ. of Tokyo)

- Introduction
- Vertex finder
- Jet clustering
- Flavor tagging
- Application to ZHH & Summary

jets vs. performance drivers

2-4 jets: ZH, WW, ZZ etc.

PFA Pure flavor tagging 6-8 jets: ZHH, ttH, tt etc.

Jet clustering Noise-resistant flavor tagging

J.Tian, ALCPG 11

Measurement of the trilinear Higgs self-coupling @ ILC

• double Higgs-strahlung (dominate at lower energy)

WW fusion (dominate at higher energy)

ZHH BR & # events (m_H=120 GeV)

Decay mode	BR.	# events in 1 ab ⁻¹
qqbbbb	32%	73
vvbbbb	9%	21
qqbbWW*->qqbbqqqq	6%	14
llbbbb	4%	10
qqbbWW*->qqbbqql∨	3%	7
qqbbWW*->qqbbl∨qq	3%	7
others	43%	97
tt -> bbqqqq		~400,000

- assuming polarization (e⁻: 80%, e⁺: 30%)
- qqbbbb has > 30% branching ratio
- all others < 10%
- total cross section is 0.225fb extremely small!

qqhh (with Z-like pair)

reduction table $E_{\rm cm} = 500 {\rm GeV}, M_H = 120 {\rm GeV}$

P(e-,e+)=(-0.8,+0.3)

normalized	expected	MC	pre- selection	probZ1-probZ2>0.9	Evis>400 MisaPt<60 I (Pimax>20&&Econe> 10)	MLP_bbbb>0.2	MLP_bbqqqq> -0.3	MLP_qqbbbb> -0.6	Bmax3>0.7 Bmax4>0.3
qqhh(qqbbbb)	313(138)	117173	82.0(65.1)	15.5(13.8)	13.9(13.0)	13.1(12.3)	12.7(11.9)	12.1(11.4)	8.50(8.15
qqbbbb	192	59994	50.9	3.17	2.97	2.01	1.75	1.28	0.55
qqqqH(ZZH)	381	49702	45.8	6.58	5.72	5.11	4.80	4.14	2.70
bbcsdu	394548	710285	3016	29.7	29.1	22.3	14.9	13.5	1.38
bbuddu	199165	109200	374	10.5	7.92	5.37	5.37	5.37	0.28
bbcssc	197790	359084	4904	58.4	53.8	47.9	39.2	36.5	2.01
ttqq	2169	9999	170	10.0	5.08	4.83	4.70	4.49	1.85
bbbb	40824	198431	4722	598	494	2.83	2.20	1.80	1.27
lvbbqq	821199	797027	12216	230	33.2	6.18	6.18	4.39	0.07
BG			25509	951	636	100	82.2	73.7	11.7

(probZ1+probZ2 > 0.9)

 $\int Ldt = 2ab^{-1}$

qqhh (without Z-like pair) reduction table

P(e-,e+)=(-0.8,+0.3)

reduction table (probZ1+probZ2 < 0.9)

 $E_{\rm cm} = 500 {\rm GeV}, M_H = 120 {\rm GeV}$

			probZ1+probZ2<0.9					
qqhh(qqbbbb)	313(138)	82.0(65.1)	66.4(51.3)	63.0(50.9)	57.6(48.7)	54.9(47.1)	33.1(29.1)	16.6(15.1)
qqbbbb	192	50.9	47.7	47.4	44.9	36.2	11.7	6.00
qqqqH(ZZH)	381	45.8	39.2	38.2	35.0	32.3	15.5	7.65
bbcsdu	394548	3016	2986	2973	2869	2581	469	42.2
bbuddu	199165	374	364	364	356	tthar	with	5.37
bbcssc	197790	4904	4845	4825	4616	mis-l	o-tag	39.6
ttqq	2169	170	159	107	79.4	78.4	42.8	13.7
bbbb	40824	4722	4124	4106	3368	70.1	18.2	9.12
lvbbqq	821199	12216	11986	8041	1641	297	49.4	4.34
BG		25509	24557	20509	13015	7555	1298	129

62

 $Ldt = 2ab^{-1}$

put all together (preliminary)

 $e^+ + e^- \rightarrow ZHH \ M(H) = 120 \text{GeV} \ \int Ldt = 2ab^{-1}$

Polarization: $(e_{-},e_{+})=(-0.8,0.3)$

				significance		
Energy (GeV)	Modes	signal	background	excess (I)	measurement (II)	
500	$ZHH ightarrow (lar{l})(bar{b})(bar{b})$	6.4	6.7	2.1σ	1.7σ	
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	5.2	7.0	1.7σ	1.4σ	
FOO	7111 (27)(1)(1)	8.5	11.7	2.2σ	1.9σ	
500	$\Delta \Pi \Pi \rightarrow (qq)(bb)(bb)$	16.6	129	1.4σ	1.3σ	

we are interested in:

- A. the combined significance of ZHH excess.
- B. the combined precision of measured ZHH cross section.

Overall signal excess: 3.9σ in 2 ab⁻¹ -> not enough??

'# of b jets' in ZHH

of b-jets is reduced due to mis-jet-clustering.

finished! • Introduction
• Vertex finder
• Jet clustering
• Flavor tagging
• Application to ZHH & Summary

A new build-up vertex finder LCFIVertex package already has ZVTOP vertex finder; but ZVTOP needs jet directions (purity significantly goes down without jet direction)

Original vertex finder

- Build-up method (pairing tracks -> association)
- Do not use jet direction
- Including mass-based vertex selection
- Targeted for higher purity (wrong vertices significantly affect jet clustering)

For implementation details, see ALCPG11 slides

Comparison of vertex finders

Vertex qualification (by MC)

GOOD vertex:

All tracks in the vertex originate from the same MC metastable particle (mainly b- or c- hadrons). Tracks from secondary and tertially vertices may be combined in the same GOOD vertex

PURE vertex:

All tracks in the vertex are from the same vertex (ie. secondary, tertially and more following vertices must be completely separated)

Performance: track view

qqhh, 50	0 GeV	ZVTO	OP (Durham 6-jets) Build-up orig			ild-up origi	nal
Trks.	# tracks	All	GOOD	PURE	All	GOOD	PURE
Primary	10231	160			54		
b	2037	1399	1344	857	1309	1303	919
С	2433	1653	1618	1181	1571	1562	1197
Others	587	159	45	34	46	18	13
All	15288	3371	3007	2072	2980	2883	2129

bbcssc,	500 Ge\		^{>} (Durham	6-jets)	Bu	ild-up origi	nal
Trks.	# tracks	All	GOOD	PURE	All	GOOD	PURE
Primary	6980	76			14		
b	893	612	593	405	579	573	413
С	1627	1086	1052	878	1045	1035	874
Others	430	119	28	24	53	19	15
All	9930	1893	1673	1307	1691	1627	1302

Introduction
finished!
Vertex finder
Jet clustering
Flavor tagging
Application to ZHH & Summary

Concept of the jet clustering

Jet clustering with only 4-momenta information has a limitation

Low-energy quark-jet reconstruction (inevitable for reconstructing 6/8-jet processes) => cannot be distinguished with hard-gluons
Durham, Cambridge, Lund, ... all similar performance

Vertex information is very powerful for jet clustering

b/c hadrons are usually at the core of the color string
good separation from gluon emission (g->bb, cc BR is small)

Vertex jet clustering!

Vertex combination & muons

Vertex finder -Build-up (original)

Secondary muons

Simple muon tagging:

- PFO w/ MUON hit > 50 MeV
- Impact parameter > 5 σ , < 5 mm
- ECAL, HCAL energy deposit (ECAL < 1.0 GeV, 1.5 < HCAL < 5.0 GeV)

Seed of the jets
Combined vertex

Combination criteria:

- opening angle of two vertices to IP < 0.2 rad.
- opening angle of the vertex and muon direction to IP < 0.3 rad.

.....

H

Secondary vertex

Muon direction

Jet clustering using vertices

- 1. Combined vertices are listed as 'jet core'
- 2. All particles within 0.2 rad. to the jet core are associated to the core
- 3. All associated jet cores and residual particles are associated with Durham y criteria

$$y = \frac{2\min(E_1, E_2)^2 (1 - \cos \theta_{ij})}{Q^2}$$

* Jet cores with vertices are never combined to each other (y value is set to +inf.)

b-hadron separation (6b process)

All jets including b – 52% -> 66% Significant improvement! (already shown in ALCPG)

b-hadron tracks (qqhh vs bbcssc)

Jets are sorted by descending order of # of b-hadron tracks

Mass peak (reco)

All combinations are used No significant difference

Introduction
Vertex finder
finished!
Jet clustering
Flavor tagging
Application to ZHH & Summary

Update on the flavor tagging

- Use of TMVA instead of home-maid ANN
- More input variables
 - boosted sphericity
 - vertex displacement/momentum angle
 - vertex mass (not pt corrected)
 - mass, momentum, decay distance, decay significance for the first and second (if found) vertices
 - distance, significance, and displacement/momentum angle between the first and second vertices
- See ALCPG11 slides for the details

flavor tagging

Separation of ttbar background

- qqhh (h->bb) : 4-6 b
 bbcssc (ttbar) : 2 b
- b-probability of 3rd & 4th jet is the separator Sum of b-prob. over 6-jets can be used as well
- High background rejection ratio needed
 Cross section ratio: 1 : >1000 (!)
- Signal efficiency vs bg acceptance ratio
 Obtained by varying threshold

Separation ZHH vs ttbar

Overall performance improvement seen (sep. high-purity rgn.)
(this is old-LCFI results; new framework is about to be ready)

Introduction
Vertex finder
Jet clustering
finished!
Flavor tagging
Application to ZHH & Summary

ZHH/ttbar separation

 Separation variables B-tag variable (tt: 2b, qqHH: >4b) – Masses (Z, H, W, top) Angles (tt: t-channel dominant) Now concentrated on b-tag variables Other cut optimization needs more statistics Requirements of b-likeness in 3rd & 4th jet Cut at 50% signal efficiency • New: 3^{rd} th = 0.9, 4^{th} th = 0.465 • Old: 3^{rd} th = 0.88, 4^{th} th = 0.405

Separation performance

Vertex jet clustering

3 rd & 4 th jet cut	3 rd jet cut	4 th jet cut	No cut	
3163 (28)	4367 (38)	4233 (37)	8352 (73)	qqHH (H -> bb)
20 (201)	113 (1140)	95 (960)	9930 (100000)	bbcssc
provement!	30% im		ustering	urham jet cl
3 rd jet cut	3 rd jet cut	4 th jet cut	No cut	
3116 (27)	4382 (38)	4277 (37)	8352 (73)	qqHH (H -> bb)
29	137	145 (1460)	9930 (10000)	bbcssc
(27) (29) (202)	(38) 137	(37) 145 (1460)	(73) 9930 (100000)	(H -> bb) bbcssc

Summary

- Improvement of jet-clustering, vertex finder & flavor tagging is necessary for ZHH analysis
- Original vertex finder can make vertices without jet clustering, performance not so degraded (compared to old LCFI/ZVTOP)
- Jet clustering shows significant reduction of bbcssc background

Prospects

To Do

- Optimize flavor tagging for multi-jets
- Tuning vertex finder (more) / lepton tagging
- Full ZHH analysis
 - Need more backgrounds! (with new Mokka/ilcsoft)
- Overlay beam background
- Vertex finder: speed
- Software cleanup & publication
 - Including cooperation with CLIC strategy