
Event generation for CLIC
WHIZARD and PYTHIA

S. Poss

CERN, Switzerland

May 24, 2011

1 / 21



Outline

1. Introduction

2. Generation procedure for CLIC detectors’ benchmarks

3. WHIZARD

4. PYTHIA

5. Conclusion

2 / 21



Introduction

Part I

Introduction

3 / 21



Introduction

Introduction

Conceptual Design Report: 6 channels considered to show detectors
are able to deal with CLIC environment.
This talk:

• Generation process discussed

• Pros and cons of the chosen solutions, WHIZARD and PYTHIA

4 / 21



Generation procedure for CLIC detectors

Part II

Generation for CLIC detectors

5 / 21



Generation procedure for CLIC detectors

Generating events for CLIC detectors
Benchmark processes considered:

• e+e−→ hνeνe

• e+e−→ H+H−, e+e−→ H0A0

• e+e−→ q̃Rq̃R

• e+e−→ ˜̀ ˜̀
• e+e−→ χ̃

+
i χ̃
−
j , e+e−→ χ̃

0
i χ̃

0
j

• e+e−→ tt at 500 GeV

Not listed here: background samples needed, among which
e+e−→ qq , e+e−→W+W− or even e+e−→W+W−Z0.

Total number of events needed for the CDR: 3.6 million.

Global framework used for production: same tools for generation,
simulation, reconstruction: ILCDIRAC for job submission to the GRID.

6 / 21



Generation procedure for CLIC detectors

Generating events for CLIC detectors

Large number of channels considered (more than 30), need proper
tools:

• ILC decided to use WHIZARD (see next slides), we are grateful to
benefit from the experience

• We added PYTHIA for some channels (see later)

Constrain:

• Simulation times (and reconstruction times when overlaying
γγ → Hadrons events) become very large at 3 TeV: need small
input samples. E.g. e+e−→ tt: 10 events per job.

⇒ At generator level, produce many small files. Run several times the
generator per CPU slot (reduce the risk of failure per execution).

7 / 21



WHIZARD Pros Cons

Part III

WHIZARD

8 / 21



WHIZARD Pros Cons

WHIZARD

Multi-purpose generator dedicated to linear colliders.

Designed for efficient calculation of multiple scattering cross
sections and simulated event samples.

Developed by Wolfgang Kilian, Thorsten Ohl, Jürgen Reuter, and
Christian Speckner.

Version used: v1.95 modified by Tim Barklow for ILC case handling.
Cannot use v2 because no beam spectrum handling yet.

Akiya Miyamoto and Mikael Berggren use it also for ILC DBD
generation. Very good collaboration – THANKS!

9 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Pros (1)

• Defining a process is as simple as
ww_n1n1 e1,E1 W+,W-,n1,N1 omega

ddcse1n1_o e1,E1 d,D,c,S,e1,N1 omega
• Supports aliases: alias q u:d:s:c:b, alias Q U:D:S:C:B and define

qq e1,E1 q,Q omega

• Simplifies process definitions

• Provides diagrams illustrations to be run with LATEX

10 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Pros (2)

• Computes the cross sections taking into account all possible
intermediate diagrams: can lead to surprises.
Example : benben e1,E1 b,E1,n1,B,e1,N1 omega

11 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Pros (3)

But it also corresponds to:

plus ≈ 100 diagrams, in total only 1 contains the tt pair that we want.
Generated sample for that channel contains 32% of e+e−→ tt decays.

12 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Pros (4)

• Able to generate a number of events corresponding to wanted
luminosity

This was (and still is) used for the ILC production. We don’t use it, for
bookkeeping reasons: not all files produced have the same number of
events.

13 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Cons (1)

• The final states provided by WHIZARD have no width: not
possible to generate directly e+e−→ tt, e+e−→W+W−,
e+e−→ Z0Z0, e+e−→W+W−Z0, e+e−→ Z0Z0Z0,
e+e−→ Hνeνe, etc.

Possible solution: provide the exact final state

• for tt, ask for bbqQqQ, WHIZARD to PYTHIA interface rebuilds
the top pair,

• then integration time is very large: several days, cannot run on
the GRID.

14 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Cons (2)

The following are my return on experience:

• Written in Fortran: I don’t know that language (too young)

• Tedious to install: thanks to M. Berggren, convenient install script
available.

• Requires dedicated beam spectrum interface: provided by Tim.

• Generator level cuts are not simple to setup. Some are forbidden
(divergence during integration): use L. Weuste’s tool “stdhepCut”
to cut after generation→ generate a very big sample and keep
only the events passing the cuts.

• Cannot select diagrams to use, only visualization.

15 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Cons (2)

The following are my return on experience:

• Written in Fortran: I don’t know that language (too young)

• Tedious to install: thanks to M. Berggren, convenient install script
available.

• Requires dedicated beam spectrum interface: provided by Tim.

• Generator level cuts are not simple to setup. Some are forbidden
(divergence during integration): use L. Weuste’s tool “stdhepCut”
to cut after generation→ generate a very big sample and keep
only the events passing the cuts.

• Cannot select diagrams to use, only visualization.

15 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Cons (2)

The following are my return on experience:

• Written in Fortran: I don’t know that language (too young)

• Tedious to install: thanks to M. Berggren, convenient install script
available.

• Requires dedicated beam spectrum interface: provided by Tim.

• Generator level cuts are not simple to setup. Some are forbidden
(divergence during integration): use L. Weuste’s tool “stdhepCut”
to cut after generation→ generate a very big sample and keep
only the events passing the cuts.

• Cannot select diagrams to use, only visualization.

15 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Cons (2)

The following are my return on experience:

• Written in Fortran: I don’t know that language (too young)

• Tedious to install: thanks to M. Berggren, convenient install script
available.

• Requires dedicated beam spectrum interface: provided by Tim.

• Generator level cuts are not simple to setup. Some are forbidden
(divergence during integration): use L. Weuste’s tool “stdhepCut”
to cut after generation→ generate a very big sample and keep
only the events passing the cuts.

• Cannot select diagrams to use, only visualization.

15 / 21



WHIZARD Pros Cons

WHIZARD v1.95: Cons (2)

The following are my return on experience:

• Written in Fortran: I don’t know that language (too young)

• Tedious to install: thanks to M. Berggren, convenient install script
available.

• Requires dedicated beam spectrum interface: provided by Tim.

• Generator level cuts are not simple to setup. Some are forbidden
(divergence during integration): use L. Weuste’s tool “stdhepCut”
to cut after generation→ generate a very big sample and keep
only the events passing the cuts.

• Cannot select diagrams to use, only visualization.

15 / 21



PYTHIA Pros Cons

Part IV

PYTHIA

16 / 21



PYTHIA Pros Cons

PYTHIA

For the channels that cannot be done using WHIZARD because of the
zero width problem for final states involving e.g. Z0, we use PYTHIA
directly.

Code was provided by Marco Battaglia.

17 / 21



PYTHIA Pros Cons

PYTHIA: Pros

• Program provided has a straight forward interface: defining the
process is just setting MSEL (PYTHIA common block).

• Generates without any problems tt,W+W−,Z0Z0, Higgs
channels.

• Fast!

• Daniel Schulte provides Calypso: input the beam spectrum
directly without the need for conversion.

• Generator level cuts are easier to apply, as they are directly
implemented in the event loop.

18 / 21



PYTHIA Pros Cons

PYTHIA: Pros

• Program provided has a straight forward interface: defining the
process is just setting MSEL (PYTHIA common block).

• Generates without any problems tt,W+W−,Z0Z0, Higgs
channels.

• Fast!

• Daniel Schulte provides Calypso: input the beam spectrum
directly without the need for conversion.

• Generator level cuts are easier to apply, as they are directly
implemented in the event loop.

18 / 21



PYTHIA Pros Cons

PYTHIA: Pros

• Program provided has a straight forward interface: defining the
process is just setting MSEL (PYTHIA common block).

• Generates without any problems tt,W+W−,Z0Z0, Higgs
channels.

• Fast!

• Daniel Schulte provides Calypso: input the beam spectrum
directly without the need for conversion.

• Generator level cuts are easier to apply, as they are directly
implemented in the event loop.

18 / 21



PYTHIA Pros Cons

PYTHIA: Pros

• Program provided has a straight forward interface: defining the
process is just setting MSEL (PYTHIA common block).

• Generates without any problems tt,W+W−,Z0Z0, Higgs
channels.

• Fast!

• Daniel Schulte provides Calypso: input the beam spectrum
directly without the need for conversion.

• Generator level cuts are easier to apply, as they are directly
implemented in the event loop.

18 / 21



PYTHIA Pros Cons

PYTHIA: Pros

• Program provided has a straight forward interface: defining the
process is just setting MSEL (PYTHIA common block).

• Generates without any problems tt,W+W−,Z0Z0, Higgs
channels.

• Fast!

• Daniel Schulte provides Calypso: input the beam spectrum
directly without the need for conversion.

• Generator level cuts are easier to apply, as they are directly
implemented in the event loop.

18 / 21



PYTHIA Pros Cons

PYTHIA: Cons

• Cannot produce W+W−Z0, Z0Z0Z0: not part of PYTHIA’s
process list. Need to use comphep: M. Battaglia will generate
them.

• Written in Fortran.

• Tedious to install: compilation very sensitive to gfortran version,
Calypso had to be modified to compile on 64bit machine.

• Not simple to configure on the fly: not possible to use
configuration file (FFREAD routine fails on 64bits), rather use
environment variables.

• Generator level cuts not configurable at run time.

Last 2 points not too much a problem as PYTHIA is used only for 3
channels.

19 / 21



PYTHIA Pros Cons

PYTHIA: Cons

• Cannot produce W+W−Z0, Z0Z0Z0: not part of PYTHIA’s
process list. Need to use comphep: M. Battaglia will generate
them.

• Written in Fortran.

• Tedious to install: compilation very sensitive to gfortran version,
Calypso had to be modified to compile on 64bit machine.

• Not simple to configure on the fly: not possible to use
configuration file (FFREAD routine fails on 64bits), rather use
environment variables.

• Generator level cuts not configurable at run time.

Last 2 points not too much a problem as PYTHIA is used only for 3
channels.

19 / 21



PYTHIA Pros Cons

PYTHIA: Cons

• Cannot produce W+W−Z0, Z0Z0Z0: not part of PYTHIA’s
process list. Need to use comphep: M. Battaglia will generate
them.

• Written in Fortran.

• Tedious to install: compilation very sensitive to gfortran version,
Calypso had to be modified to compile on 64bit machine.

• Not simple to configure on the fly: not possible to use
configuration file (FFREAD routine fails on 64bits), rather use
environment variables.

• Generator level cuts not configurable at run time.

Last 2 points not too much a problem as PYTHIA is used only for 3
channels.

19 / 21



PYTHIA Pros Cons

PYTHIA: Cons

• Cannot produce W+W−Z0, Z0Z0Z0: not part of PYTHIA’s
process list. Need to use comphep: M. Battaglia will generate
them.

• Written in Fortran.

• Tedious to install: compilation very sensitive to gfortran version,
Calypso had to be modified to compile on 64bit machine.

• Not simple to configure on the fly: not possible to use
configuration file (FFREAD routine fails on 64bits), rather use
environment variables.

• Generator level cuts not configurable at run time.

Last 2 points not too much a problem as PYTHIA is used only for 3
channels.

19 / 21



PYTHIA Pros Cons

PYTHIA: Cons

• Cannot produce W+W−Z0, Z0Z0Z0: not part of PYTHIA’s
process list. Need to use comphep: M. Battaglia will generate
them.

• Written in Fortran.

• Tedious to install: compilation very sensitive to gfortran version,
Calypso had to be modified to compile on 64bit machine.

• Not simple to configure on the fly: not possible to use
configuration file (FFREAD routine fails on 64bits), rather use
environment variables.

• Generator level cuts not configurable at run time.

Last 2 points not too much a problem as PYTHIA is used only for 3
channels.

19 / 21



PYTHIA Pros Cons

PYTHIA: Cons

• Cannot produce W+W−Z0, Z0Z0Z0: not part of PYTHIA’s
process list. Need to use comphep: M. Battaglia will generate
them.

• Written in Fortran.

• Tedious to install: compilation very sensitive to gfortran version,
Calypso had to be modified to compile on 64bit machine.

• Not simple to configure on the fly: not possible to use
configuration file (FFREAD routine fails on 64bits), rather use
environment variables.

• Generator level cuts not configurable at run time.

Last 2 points not too much a problem as PYTHIA is used only for 3
channels.

19 / 21



Conclusions

Part V

Conclusions

20 / 21



Conclusions

Conclusion

• WHIZARD is a great tool for cross sections evaluations: does
proper diagram interference computations

• Simple to define a decay process

• Some channels cannot be done (tt) because final states have no
width, and integration time very large (several days)

• PYTHIA is straight-forward

• Can generate the tt, W+W−, and Z0Z0 with width

• Very fast

• Not configurable during runtime

• Cannot generate W+W−Z0, Z0Z0Z0

Combining both programs, most channels are covered and can be
generated.

21 / 21


	Introduction
	Introduction

	Generation for CLIC detectors
	Generation procedure for CLIC detectors

	WHIZARD
	WHIZARD
	Pros
	Cons

	PYTHIA
	PYTHIA
	Pros
	Cons

	Conclusions
	Conclusions


