

ILC CFS / CLIC CES Studies for the Interaction Region:

- An action was given at the Geneva Linear Collider Meeting for CFS to develop a more in-depth civil engineering study of the IR
- Linear Collider IR meeting at CERN held on 16 February 2011
- -Design Brief for external design specialists
- -Kick-off meeting with ARUP is today
- -Next steps

Detector movement system and experimental area layout for a Linear Collider

chaired by John Andrew Osborne (CERN)

Wednesday 16 February 2011 from **09:00** to **17:00** (Europe/Zurich) at CERN (354-1-016)

Participants Jean-Pierre Delahaye; Andrei Dudarev; Konrad Elsener; Andrea Gaddi; Martin Gastal; Lau Gatignon; Jean-Christophe Gayde; Hubert Gerwig; Michael Guinchard; Alain Herve; Mark Jones; Victor Kuchler; Hélène MAINAUD DURAND; Dirk Mergelkuhl; Hermann Schmickler; Steinar Stapnes

Wednesday 16 February 2011

09:00 - 09:05	Introduction 05' Speaker: Jean-Pierre Delahaye (CERN)
09:05 - 09:45	Civil engineering works for Linear Colliders 40' Speakers: John Andrew Osborne (CERN) , Martin Gastal (CERN) , Victor Kuchler (Fermilab)
09:45 - 10:15	Assembling, lowering and moving a 14'000-tonne experiment at CLIC 30' Speaker: Hubert Gerwig (CERN)
10:15 - 10:30	Coffee 15'
10:30 - 11:00	Vibration issues at Linear Colliders and consequences for CLIC 30' Speaker: Andrea Gaddi (CERN)
11:00 - 11:30	Reflections on moving and aligning large masses around IP at CLIC 30' Speaker: Alain Herve (CERN)
11:30 - 12:00	CLIC/LHC sub-micron ground motion and vibration measurements 30' Speaker: Michael Guinchard (CERN)
12:00 - 13:30	LUNCH 1h30'
13:30 - 14:00	LHC long term ground movement measurements 30' Speaker: Jean-Christophe Gayde (CERN)
14:00 - 14:45	ARUP experience in similar fields 45'
14:45 - 16:45	General discussion on future studies 2h00'

CLIC- DETECTORS HALL AREA (SURFACE AND UNDERGROUND)

ILC RDR Baseline Layouts for Interaction Region

Several 'concerns' have been raised with the ILC RDR layout

New ILC baseline needs to be agreed

Transport mechanism 1,1	Excess pore pressure, cyclic load degradation 1,2	to limit to 0.5 g during transport 1,3	Influences Cavern geometry 1,4
EDZ & creep may adversely affect tolerances	Ground Behaviour 2,2	Damping characteristics reduced with > yield, softening 2,3	Profiles to minimise EDZ, creep, load asymmetry 2,4
Probably minor	Probably minor	Vibration effects	Foundation to provide adequate damping characteristics
Adequate space required for chosen mechanism	Methods to minimise EDZ and provide early cover to Molasse	To avoid design that amplifies vibrations	Construction & design

Task 1 - The design of the underground concrete platforms required to transport each of the two Linear Collider Detectors on and off the beam-line position.

- Two platforms would be required, one for each detector.
- Load of each detector, excluding platforms, of approximately 14,000tons
- Intermediate supports determined by the preferred movement system.
- Platform movement on/off the beamline to be moved over a period of the order of five hours,
- Up to 20 movements per year during machine operation.
- Accelerations of the detector during movement to be limited to 0.5g
- Location of the platforms to within +/-1mm and +/-0.1 milli-rads of their target location relative to final focus quadrupole base slab.

Air pads v Rollers for concrete platform movement will be further analysed

Task 2 - A detailed study of the potential behaviour of the rock mass surrounding the experimental area during the estimated 20-year life span of the machine.

- Experience from other cavern rock related mass conditions should be taken into account e.g LHC.
- 2D and 3D effects to be assessed.
- The study should assume that the experimental area is to be built in CERN geology, in the Molasse Rock
- The long-term behaviour of the excavation

2d and 3d models will be developed for CLIC to do a "Time-dependant" state analysis.

Possible 2nd phase use of these models for ILC layouts/geology.

Task 3 - Passive isolation slab design

- Required maximum relative rms displacement of the beams is 0.1nm.
- Below 4Hz, vibration can be mitigated by active systems through steering the beam.
- Provide passive isolation at the end of each accelerator tunnel, where the beams emerge from the tunnel before entering the detector.
- Slab could be approximately 50 100 tons of concrete, resting on several springs and dampers this will be assessed through our evaluation, as outlined below.

Task 4 - Review of the Experimental Area design

- Layout of the shafts/cavern based on available geotechnical information and current space proofing.
- Review of suitability of various strata depths for cavern location

To get this study going, ARUP have prepared a list of questions including a 'brainstorming' proposal for the IR layout.

To be discussed this afternoon.....

For example, ARUP have made a 'brainstorming' proposal for the IR layout:

To be discussed this afternoon.....

Budget for this Linear Collider IR study:

FNAL (Task 1) CERN (Task 2)

Some key decisions for ILC were resolved at Eugene meeting:

- Are both detectors using the "concrete" platform strategy: <u>Yes</u>
- Are the level of the platforms the same ?
- For the overall layout :
 - Gantry crane capacity in the experimental hall?
 - Should shafts be directly over the cavern or offset?
 - Self shielding detectors: <u>Yes for ILC</u>

Next Steps

- ARUP's now ready to proceed with :
 - Task 1 funded by FNAL
 - Task 2 funded by CERN
- This study will be of benefit to both ILC and CLIC projects
- Design Criteria to be established at this meeting

CFS Discussion 14:00 - 16:30 Discussion und experimental hall issues with ILC-CFS, SID and ARUP Conveners: Karsten Buesser (DESY) , Toshiaki Tauchi (KEK) Location: Salle Bleue Material: Webex Info Introduction 30' 14:00 Speaker: John Andrew Osborne (CERN) 14:30 Push-pull Platform Studies and Simulations 30' Speaker: Marco Oriunno (SLAC National Accelerator Laboratory) 15:00 Status of IR Design for CLIC 30' Speakers: Hubert Gerwig (CERN), Andrea Gaddi (CERN) Material: Slides 💷 15:30 Discussion 1h00'